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Abstract 

This study aims to develop a self-learning Digital Twin (DT) model using a data 

assimilation approach, i.e., the Kalman Filter, which can adjust a numerical model 

with the sparse sensing (SpS) model. The numerical model, i.e., the DT, is obtained 

by coupling a dimensionality-reduction method, the Proper Orthogonal 

Decomposition (POD), and the Gaussian Process Regression (GPR) model for 

several Reynolds-averaged Navier-Stokes (RANS) simulations of a semi-industrial 

combustion furnace. The SpS technique leverages dimensionality reduction to 

predict the state of the system using experimental measurements as input. Finally, 

the DA framework has been used to provide a solution with lower uncertainty 

bounds. The results show that this framework can be used to upgrade the DT by 

considering a SpS model built from experimental values. 

 

Introduction 

Meeting society's energy needs is challenging due to intermittent renewable sources 

and the requirement for long-term storage and high-density energy for transportation 

and manufacturing. One solution is storing excess renewable energy as synthetic 

fuels, integrated with combustion systems. Novel combustion technologies such as 

Moderate and Intense Low-oxygen Dilution (MILD) combustion offer high 

efficiency and fuel flexibility with low emissions [1]. While CFD tools have 

advanced significantly, the use of physics-based reduced-order models (ROMs) is 

becoming increasingly attractive for real-time simulations. These models can 

simplify the relationship between inputs and outputs, allowing for faster simulations 

of complex combustion regimes like MILD combustion. Additionally, the 

development of digital twins (DTs), for industrial systems presents numerous 

opportunities, including using data to anticipate system response and using 

simulations to develop new technologies through virtual prototyping [2]. Accurately 

assessing the reliability of numerical models is a crucial and challenging task, given 

a lot of uncertainties that are not yet fully understood or quantified. To improve 

design models, a blend of experimental data and numerical models is necessary. Data 
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assimilation (DA) offers this type of solution by combining both experimental and 

numerical models to enhance accuracy in numerical forecasts and minimize errors 

related to both sources [3]. This work introduces a novel framework for DA that 

efficiently integrates experimental data with a digital twin (DT) developed for a 

combustion furnace. The proposed DA scheme combines results collected from 

experiments with DT predictions to enhance the DT’s accuracy. This goal is 

achieved by developing the DT as a ROM using Gaussian Process Regression (GPR) 

and Proper Orthogonal Decomposition (POD) and comparing it to the results 

obtained using a Sparse Sensing (SpS) method. This GPR-based ROM methodology, 

demonstrated by Aversano et al. [4] to develop ROMs of turbulent reacting flow 

applications, was applied to build the DT of a MILD combustion furnace. The SpS 

method [5] is used to construct a hybrid experimental-numerical DT for MILD 

combustion by coupling POD modes, recovered from numerical simulations, with 

experimental measurements [6]. 

 

Numerical and Experimental set-up 

The test case used for this study is the ULB semi-industrial combustion furnace, with 

a nominal power of 20 kW. The furnace is composed of a cubic combustion chamber 

insulated with a thick high-temperature ceramic foam layer. The furnace 

incorporates a burner with a heat exchanger to recover heat from the exhaust gases 

and preheat the combustion air. Fuel injection occurs through a central nozzle, 

surrounded by a coaxial air jet. The unit is equipped with four air cooling tubes 

located inside the furnace. An opening is available for measurements on each vertical 

wall of the chamber. Fig. 1 reports the schematic representation of the furnace. In-

flame temperature profiles are sampled at different axial and radial locations of the 

furnace, with a suction pyrometer equipped with N-type thermocouples. 

Electrochemical sensors with nominal accuracy for different species are used to 

measure the exhaust gas composition. All the experiments are performed at steady-

state operating conditions. More details can be found in [7]. 

  
Figure 1. Vertical cross-section (top left), burner nozzle (bottom left), and 3D half 

geometric representation (right) of the ULB MILD combustion furnace. 

 

41 RANS simulations were generated to obtain the necessary samples for developing 
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the ROM of the furnace. Three input parameters were considered to produce the 

simulation samples: the content of hydrogen, 0-100%, the equivalence ratio (∅ =
 0.7 − 1) and air nozzle diameter (ID = 16, 20 and 25 mm). Regarding the setup of 

the numerical simulations, we consider the standard 𝑘 − 𝜀 turbulence model with the 

Partially Stirred Reactor (PaSR) model for the turbulence-chemistry interactions 

with a Cmix of 0.5 and the KEE (17 species and 58 reactions) for the kinetic 

mechanism. The computational domain is a 45° angular sector of the 3D geometry 

of the chamber, given the symmetry of its domain. The selected grid contains about 

200k cells. More detailed information on the simulation can be found in [4, 7].  
 

Methodology  

The goal of the ROM is to predict the complete thermo-chemical state of the furnace 

at unexplored operating conditions. This outcome can be accomplished by 

combining dimensionality reduction through POD with regression conducted via 

GPR. The POD (also known as Principal Component Analysis [8]) is a data 

compression method where the data matrix 𝑿 ⊂ ℝ𝑛,𝑝 is decomposed into: 

 

𝑿 = 𝑼𝑨𝑇 

with 𝑼 ⊂ ℝ𝑛,𝑝 and 𝑨 ⊂ ℝ𝑝,𝑝 , which are orthogonal matrices that constitute a basis 

for the columns and rows of 𝑿 , respectively. POD is used to reduce dimensionality 

since the truncation of the new basis to the q-order minimizes the reconstruction 

error in the 𝑙2 norm. This implies that the matrix 𝑿  can be approximately estimated 

as: 

𝑿 ≈ 𝑼𝑞𝑨𝑞
𝑇 

where 𝑼𝑞  ⊂ ℝ𝑛,𝑝 and 𝑨𝑞  ⊂ ℝ𝑝,𝑝 are the q-order truncation of 𝑼 and 𝑨. The matrix 

𝑿 is constructed by gathering the outcomes of the numerical simulations, by varying 

the three parameters explained in the previous section: each column of 𝑿 contains 

the results of a simulation, and the number of rows is the number of computational 

cells times the number of variables. The variables considered are the temperature 

inside the furnace and the species mass fraction. To predict the solution in the 

unexplored region of the design space, a GPR model is employed. This regression 

problem is expressed as y =  f(x) + ε , where y is the observed value, f(x) is the 

underlying function we are modeling (a sample from a Gaussian Process (GP)), x is 

the independent variable and is the noise ε formulated as an independent, identically 

distributed (i.i.d.) random variable. More details about GPR method can be found in 

[9]. After training the model, the ROM can map each simulation made of a specific 

set of parameters to the low-dimensional representation 𝑎𝐺𝑃𝑅. The solution is 

produced by projecting 𝑎𝐺𝑃𝑅 in the original higher dimensional space: 

𝑥𝐺𝑃𝑅 = 𝑼𝑞 𝑎𝑞,𝐺𝑃𝑅 

Regarding the experimental point of view, the SpS model is a powerful framework 

that leverages the concept of sparsity to efficiently capture and reconstruct signals or 

data. By exploiting the inherent sparsity in a signal, which refers to the fact that only 
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a small number of elements contribute significantly to its representation, sparse 

sensing techniques enable the reconstruction of high-quality signals using a reduced 

number of measurements. The mathematical formulation of SpS is described in 

detail in [6]. To summarize, the goal of SpS is to solve this linear system y =  𝐂x, 

with 𝑦 ⊂  𝑅𝑠 contains the measured values, 𝑪 ⊂  𝑅𝑠,𝑛 represents the measurement 

matrix and 𝑥 ⊂  𝑅𝑛 is the state of the system. Assuming a sparse representation of 

the system in a different basis, we can approximate the variable 𝑥 ≈  𝜱𝑞𝑎𝑞, where 

𝜱𝑞  ⊂  𝑅𝑛,𝑞 represents the q-order truncation of the transforming basis, and 𝑎𝑞 is the 

projection of 𝑥 onto this truncated basis. The transforming basis is determined by 

applying the Proper Orthogonal Decomposition (POD) to the dataset. Consequently, 

we can rephrase the original linear system as: 

𝑦 =  𝜣𝑎𝑞,𝑆𝑝𝑆 

with 𝜣 =  𝑪𝑼𝑞, where 𝑼𝑞 is computed through Singular Value Decomposition 

(SVD) applied to the data matrix. 

 

Data Assimilation  

Data assimilation aims to merge observations with model predictions in a way that 

optimally integrates the available information by considering the uncertainties in 

both the model and the observations. By doing so, DA methods can provide 

improved estimates of the current state of a system and even make better predictions 

about its future behaviour. The assimilation between the GPR model and the SpS 

model is done by applying the Kalman filter [10]. The Kalman filter can produce the 

optimal estimate of the system's true state given the model's prediction and the 

experimental observations.  

𝑎𝑞,𝑎𝑑𝑗 =  𝑎𝑞,𝐺𝑃𝑅 +  𝑲(𝑎𝑞,𝑆𝑝𝑆 − 𝑎𝑞,𝐺𝑃𝑅) 

𝑪𝑎𝑑𝑗  =  𝑪𝐺𝑃𝑅  −  𝑲𝑪𝐺𝑃𝑅 

𝑲 =
𝑪𝐺𝑃𝑅

𝑪𝐺𝑃𝑅 + 𝑪𝑆𝑝𝑆
 

where 𝑎𝑞,𝑎𝑑𝑗 is a linear combination through the so-called Kalman gain, K, between 

𝑎𝑞,𝐺𝑃𝑅 and 𝑎𝑞,𝑆𝑝𝑆, which represent low-dimensional representation of the GPR and 

the SpS model respectively. In addition, 𝑪𝐺𝑃𝑅 and 𝑪𝑆𝑝𝑆 are diagonal matrices 

containing the GPR and SpS model uncertainty, respectively.  

 

Results 

As mentioned before, the DT model has been applied to the matrix containing 41 

simulations obtained with different combinations of the three parameters: 

∅, 𝐼𝐷𝑎𝑖𝑟, %𝐻2. The feature included in the data matrix is the temperature field inside 

the furnace. Fig. 2a shows the temperature given by CFD simulation and the one 

predicted by the DT for the case: ∅ = 0.93, 𝐼𝐷𝑎𝑖𝑟 = 16𝑚𝑚 , %𝐻2 = 60.  
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a) b) 

 

Figure 2. a) Comparison between the original temperature field (on the left) 

and the temperature field predicted by the GPR ROM (on the right); b) Comparison 

between the original temperature field (on the left) and the temperature field 

predicted by the GPR ROM (on the right), after data assimilation. 

 

By assimilating the GPR-POD solution with the one derived from SpS, an adjusted 

solution can be obtained through the KF algorithm. The adjusted solution is therefore 

visualized in Fig. 2b. Through assimilation, the model's uncertainty is reduced by 

comparing the uncertainties associated with the GPR and SpS models. This 

expression can be illustrated in Fig. 3 for several radial profiles of temperature at 

different axial positions. The GPR model's prediction is characterized by a 

significantly higher uncertainty level than the SpS model. Consequently, the adjusted 

solution experiences a minor reduction in uncertainty. 

 
Figure 3. Several radial profiles of measured temperature along with the adjusted 

value obtained by assimilating the GPR and SpS models. 
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Conclusions 

The aim of this study is to create a DA framework that combines a DT, which is a 

ROM obtained by coupling GPR and POD, with SpS to obtain an improved DT, with 

lower uncertainty. To achieve this, a dataset consisting of 41 RANS simulations of 

a semi-industrial combustion furnace has been used as the training data, each 

simulation performed with different combinations of a set of three parameters 

(∅, 𝑰𝑫𝒂𝒊𝒓, %𝑯𝟐). First, POD has been applied to the dataset, and the GPR method 

has been trained on the set of POD coefficients, enabling the construction of a model 

capable of predicting the POD coefficients for unexplored combinations of the 

parameters. Then, to include experimental information, a SpS model has been 

constructed. This approach is aimed at finding the set of POD coefficients that 

minimizes the l2 distance with the experimental measurements. Finally, DA is 

employed to blend the DT model with the SpS one to have an adjusted DT with lower 

uncertainty than both the initial sources.   
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