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Abstract.  

Chemical kinetics modeling is a challenge. One of the challenges is related to the 

curse of dimensionality. Many reduction techniques have been applied, searching for 

alternatives to accelerate reacting flow simulations. Lately, Machine Learning 

techniques have been applied to this task. The present study assesses the applicability 

of Time-lag Auto-Encoders for chemistry reduction. 
 

1 Introduction  

Many industrial applications include reacting flows as a key issue to model and 

foresee. This means that efficient modeling techniques are a must; nowadays, the 

most common tools are Computational Fluid Dynamics (CFD) simulations, which 

unfortunately, hold a high computational overhead in proportion to the chemical 

mechanism considered and the number of physical phenomena to be modeled [9]. 

Since the principal issue regarding chemical kinetics is the curse of dimensionality, 

many dimensionality reduction techniques have been applied. For this study, there 

is a particular interest in Machine Learning (ML) techniques, from which, the 

application of PCA [6], and auto-encoders (AE) [12] are worth noticing. However, 

both come with advantages and disadvantages; in the case of PCA, even if it is an 

easy-to-apply technique, it just allows the representation of linear phenomena, 

failing to capture many of the chemistry kinetics non-linearities. On the other hand, 

AE offers a better representation of these non-linearities, however, as in the case of 

PCA, the reduced components are not directly related to chemical variables, making 

it difficult to develop closure models. In the present work, a time shift will be added 

to an AE network architecture, which gives place to a time-lag auto-encoder (TAE) 

[11]. The application of such a network adds a temporal characterization to the 

reduced components, which becomes a dynamical characterization of the chemistry. 

The aim of the present study is to assess the feasibility of such an approach for 

chemistry reduction. 

 

2 Theoretical Background  

A TAE follows the same concept and architecture as an Auto-encoders (AE), which 

is a type of neural network that is used for finding reduced representations of a given 

input vector [5]. The main difference is that a time shift is applied between the 

network’s inputs and outputs, which means modeling a dynamical system as a time 

series starting from a thermochemical initial state. Moreover, the final goal of TAE 
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is to find an encoding and decoding which minimizes the time-lagged reconstruction 

loss (LTAE); for having a physically constrained model, a physically aware loss 

function is proposed, which reflects the mass conservation principle: 
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(1) 

 

In which variables with (˜) refer to the TAE’s output, while X stands for the correct 

output state vector, and Y stands for the species mass fractions, which should sum 

up to a constant value. β is the regularization constant and M stands for the number 

of time samples in all the ignition cases. However, a reduction technique is evaluated 

in accordance with their respective reconstruction error, therefore, it is important to 

understand the reconstruction benefits of TAE regarding typical reconstruction 

techniques, such as PCA. Therefore, the question to answer is how much the 

reconstruction inaccuracies are altered by the application of a TAE while keeping a 

constant number of features for both methods. Additionally, it should be emphasized 

that TAE gives direct information about the thermochemical state evolution, while 

PCA techniques just provide information about a present state. Thus, it is intended 

to analyze both techniques under equality of conditions, a one-layer auto-encoder is 

proposed to mimic the PCA technique, called a PCA-like auto-encoder. 

 

3 Experimental Layout 

In the present work, we test the capability of TAE as a feature extraction technique 

for hydrogen combustion. The dataset for training the machine learning models is 

obtained with isobaric batch reactors simulations, developed with the Cantera 

software [4]. The reduced version of the University of San Diego chemistry 

mechanism for hydrogen combustion is used [8], which consists of 9 species and 21 

reactions. For the different ignition conditions, different values of equivalence ratio 

(ϕ) and initial temperature are considered. A Latin Hypercube Sampling was 

implemented [1] with a uniform distribution; 100 samples are obtained in a region 

delimited by ϕ ∈ [0.9, 1.2] and T ∈ [1100, 1200] Kelvin. The thermochemical state 

vectors are defined using mass fractions values and temperature values, the dataset 

normalization is done with a general maximum value per quantity, meaning that each 

quantity is divided by its maximum occurrence among all the ignition points. This 

allows all the datasets to lie in the same manifold. The applied time shift equals a 

single time step. At the same time, different sizes of bottleneck layers were explored; 

the latent spaces range is described by Z ∈ [1, 4], therefore, four different networks 

are meant to be studied, so it is possible to discuss the number of components for 

accurate reconstruction. For the chemical carrier’s identification, a correlation 

analysis is performed using Kendall’s Tau B correlation index, due to its 

boundedness and resistance to outliers [2]. 
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4 Results  

The first item to assess is the quality of reconstruction achieved by the TAE networks 

while feeding with the training data. Random ignition cases are used, and the quality 

of reconstruction is assessed via R2 scores [3] which evaluates the quality of the 

model’s output, scoring it within a constrained range of [0, 1], where 0 is given to a 

poorly performing model, and 1 to a perfect prediction. The ignition cases (ϕ = 0.92, 

T0 = 1140.35K), and (ϕ = 1.09, T0 = 1120K) were sampled; both cases proportion a 

minimum R2 score of 0.95, result compatible with a satisfactory quality of 

reconstruction. Once the quality of reconstruction is assessed in training data, it is 

possible to extrapolate to unseen conditions, which means ignition points that were 

not used during training. Three interpolation ignition cases will be studied; 

interpolation means an ignition point not considered in the training data but 

contained inside the LHS sampling limits. These ignition points are available in 

Table 1. 

 

Table 1. Interpolation ignition cases 

Case T[K] ϕ 

1 1160 0.93 

2 1200 1.0 

3 1130 1.10 

 

4.1 TAE Reduced Manifolds 

For obtaining these manifolds, the TAE network is fed with K time series that 

describe the hydrogen-air homogeneous autoignition problem in different ignition 

scenarios at the time interval [t0, tnt−1], where nt stands for the number of time steps. 

The expected output is the future values of the time series, it is to say, the state 

vectors for the time interval [t0+∆t, tnt]. The R2 score will be used again to assess the 

quality of reconstruction of the interpolation cases described in Table 1. The R2 score 

values are available in Figure 1. 

 
Figure 1. R2 scores for interpolation cases, y-axe describes the number of latent 

variables considered by the model, at left: ignition case (ϕ = 0.93, T0 = 1160K), 

center: ignition case (ϕ = 1.0, T0 = 1200K), right: ignition case (ϕ = 1.10, T0 = 
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1130K). The numbers in the y-axis refer to the latent space dimension. 

 

After observation, it is visible that the models retain a good representation of the 

dynamic behavior, returning R2 scores larger than 0.96, while the lower scores 

belong to the latent space z = 1. Such output could be associated with combustion’s 

high non-linearities, meaning that larger representations are required for an accurate 

description of the thermochemical states. In the previous section, the application of 

different bottleneck sizes is mentioned, which will be used to observe the chemical 

carriers that might appear in each case, such association is obtained using Kendall 

Tau B correlation index. The resulting associated species are available in Table 2. 

 

Table 2. Chemical carriers’ identification 

Manifold Size (Z) Chemical Carriers 

1 T 

2 T, O 

3 H2O2, T, OH 

4 O2, O, T, T 

 

It is important to mention that the same chemical carriers repeat for all the ignition 

cases, accordingly to the bottleneck size. The temperature can be considered a key 

variable since it appears in all the models. The temperature repetitiveness in the 

manifold z = 4 suggests that four variables lead to overparametrization of the states. 

Figure 2 shows the latent space behaviour of z = 2 for the three ignition cases under 

study. It is to notice the same behaviour of the curves in all cases, with magnitudes 

differences associated to the ignition case, further, the time shift from the Ignition 

Delay Time is observed. The chemical carrier’s repetitiveness suggests that a 

chemical mechanism variance can be described by key thermochemical variables. 

  

(a) (b) 

Figure 2. Latent space visualization for manifold size z = 2, (a) shows the first 

latent variable, and (b) the second latent variable. The red curve stands for the 

ignition case (ϕ = 0.93, T0 = 1160K), green curve for ignition case (ϕ = 1.0, T0 = 
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1200K), and blue curve for ignition case (ϕ = 1.10, T0 = 1130K) 

 

4.2 PCA comparison 

Here, the comparison will be performed based on the reconstruction error. For 

avoiding circumstances that could benefit one model over another, the PCA 

Autoencoder is trained with the same normalization and datasets used for the TAE 

training, and evaluations consider the same ignition cases. The scoring technique 

will be changed by the Mean Absolute Error (MAE) [7], so it is possible to estimate 

the average deviation between the predicted values and the real ones. The 

comparison highlights a significant difference between the numerical inaccuracies 

since the PCA reconstruction error (range [0, 0.04]) is easily four times higher than 

the one presented in TAE reconstruction (range [0, 0.01]). This suggests that TAE 

presents better reconstruction capabilities. However, the representation of fast 

phenomena must be assessed too. However, PCA does not manage to reproduce such 

events, issue that does not happen with TAE. The normalized reconstruction curves 

for T, OH, and HO2 are presented in Figure 3 for a latent space z = 2. Such selection 

of species searches to portray the behaviour in major, intermediate, and minor 

thermochemical variables. 

 

  

(a) (b) 

Figure 3. Normalized chemical species reconstruction for a latent space size z = 

2, the red curve shows the simulated behavior or temperatures, the green curve 

shows OH behavior, and the blue curve shows the behavior of HO2 for an 

ignition case ϕ = 1.0, T0 = 1200K (a) shows the TAE reconstruction (b) shows the 

PCA reconstruction. 

 

 

5 Conclusion 

In this study, an exploration of TAE capabilities for chemistry reduction was 

presented. It is assessed how the resultant latent variables are a more efficient 

representation of the thermochemical variables, allowing at the same time, a 

temporal characterization. It is also important to remark that TAE’s manifolds and 



JOINT MEETING 

THE BELGIAN AND ITALIAN SECTIONS 
OF THE COMBUSTION INSTITUTE  FLORENCE, ITALY - 2023 

   

 

their associated species (chemical carriers) could be used for the development of 

surrogate models that promise greater interpolation and extrapolation characteristics 

in the low data limit. Future work should be aimed at the development of better 

strategies for the description of manifold dynamics, as well as testing possible 

applications for the identified chemical carriers. 
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