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Abstract 

Combustion chemistry is nonlinear and multiscale. These aspects increase 

dimensionality of chemical space and computational cost of simulations. In this 

study, we propose a new, supervised dimensionality reduction technique, called 

Projection to Latent Structures (PLS), to project chemical species to a reduced space 

with fewer variables (or scores). In this reduced space, we solve score transport 

equations, analogous to species transport equations in chemical space. We trained a 

linear map and a Gaussian Process Regression (GPR) based nonlinear map to predict 

source terms of the scores. We found that both linear and nonlinear regression maps 

allow a significant reduction in the number of transported scores. Secondly, we 

compared the PLS-score and PLS-GPR modeling techniques with previously 

investigated Principal Component Analysis (PCA) based PC-score and PC-GPR 

techniques. We observed that PLS-based techniques allow an improved modeling of 

chemical species than PCA-based techniques, while maintaining comparable 

training and simulation time. We demonstrated our proposed techniques on methane-

oxygen and propane-air datasets from canonical, well-stirred reactor simulations.  

 

Introduction 

Combustion is expected to play a significant and synergistic role in meeting our 

future energy demands across several sectors [1]. Existing combustion devices thus 

need to be improved and new combustion modes, like Moderate and Intense Low-

oxygen Dilution (MILD) [2, 3], need to be investigated. Numerical simulations play 

a key role in realizing those improvements and novel technologies [4]. It is well 

known that combustion chemistry takes a significant fraction of the simulation time. 

Large computational costs are attributable to aspects of combustion chemistry, such 

as nonlinear Arrhenius-based source terms in species transport equations, stiffness 

of governing equations, large spatio-temporal dimensionality, etc. Several species 

and small time-steps are required to capture complex combustion dynamics. For 

engineering purposes, the transport equations must be accurately solved on large 

meshes with time-step size (Δ𝑡 ∼ 𝒪(10−7 − 10−9s)). To contribute to the 
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overarching goal of a better integration of numerical simulations in the design 

process, accelerating combustion chemistry is, therefore, extremely important. 

To accelerate chemistry computations, two broad frameworks are possible – 

hardware-oriented and modeling-oriented. In [5], the former framework was 

investigated by taking logarithm of the Arrhenius kinetic models to enable matrix-

based formulations and leverage the use of Graphical Processing Units (GPUs). The 

number of species transport equations is not reduced, rather models are re-

formulated to take advantage of better computing architectures. In the latter 

framework, chemistry computation time is reduced by alternative modeling 

strategies. Data-driven techniques [6-9] are being increasingly employed for this 

purpose. Among them, reducing number of transport equations with the help of 

Principal Component Analysis (PCA) is widely used and established [3, 8, 9].  

In this study, we take inspiration from [9] and extend the investigation to the use of 

Projection to Latent Structures (PLS) [10] for dimensionality reduction. We purport 

that as PLS focuses on maximizing covariance between chemical variables and their 

source terms, it extracts a manifold, in a supervised fashion, that is better-informed 

about the chemical kinetics. Unsupervised PCA extracts a manifold that maximizes 

explained variance in the chemical space. The species transport equations are then 

projected onto the manifolds to analogously obtain score transport equations. Given 

that we require very few scores to be transported, combustion chemistry is reduced 

in complexity paving way for faster computations.  

  

Various Machine Learning (ML) techniques 

Principal Component Analysis (PCA) 

PCA is a widely used unsupervised statistical technique [11] that extracts a set of 

hierarchical principal directions in a dataset by maximizing the variance explained 

along those directions. The dataset is arranged in a data matrix, 𝑿 ∈ ℝ𝑛𝑜×𝑛𝑐, of 𝑛𝑜 

observations and 𝑛𝑐 variables. A covariance matrix, 𝑺 = 𝑿T𝑿/(𝑛𝑜 − 1), is built and 

eigen-decomposed as 𝑺 = 𝑨𝑳𝑨T, to extract the principal directions. These directions 

are columns in 𝑨. Using only the first few (𝑞) directions, we perform dimensionality 

reduction and project 𝑿 onto another, reduced manifold, 𝑨𝑞, and get the Principal 

Component (PC) scores, 𝒁𝑞 ∈ ℝ𝑛𝒐×𝑞, where 𝒁𝑞 = 𝑿𝑨𝑞. Transport equations for 𝒁𝑞 

are derived from species transport equations and 𝑨𝑞, as shown in Ref. [8]. 

 

Projection to Latent Structures (PLS) 

PLS is a supervised dimensionality reduction technique. It operates on two data 

matrices 𝑿 and 𝒀 simultaneously and extracts reduced variables that maximize 

covariance between them. We performed PLS with chemical species in 𝑿 and their 

source terms in 𝒀 and used the Nonlinear Iterative Partial Least Squares (NIPALS) 

algorithm [10] to obtain PLS scores 𝑻𝑞 = 𝑿𝑞𝑹𝑞. The manifold is stored in 𝑹𝑞 =

𝑾𝑞(𝑷𝑞
T𝑾𝑞)

−1
 , where 𝑾𝑞 and 𝑷𝑞 are the weight and loading matrices of 𝑿. Due to 

space limitations, we cannot provide complete details here. For details, refer to [10]. 
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Gaussian Process Regression (GPR) 

GPR does not assume a specific model form and the dependent variables, such as 

source terms in this study, can be described by a Gaussian distribution with mean 

function, 𝑚, and kernel, 𝐾, as: 𝜙 ≈ 𝐺𝑃(𝑚(𝑥), 𝐾(𝑥, 𝑥′)). 
 

Results and Discussion 

 
Figure 1. a) Temperature, T, and b) mass fraction of H2O2, 𝑌𝐻2𝑂2, as function of 

residence time, 𝜏𝑟𝑒𝑠. PC-score and PLS-score approaches with 25 scores are 

compared with the detailed solution from Cantera. 

Variable NRMSE PC-score NRMSE PLS-score % Improvement 

T 1.78 × 10−3 1.73 × 10−3 2.8 

CH4 1.26 × 10−3 9.41 × 10−4 25.3 

OH 5.32 × 10−3 3.68 × 10−3 30.8 

Table 1. Normalized root mean squared error, NRMSE, for different variables 

with respect to detailed solution. Last column shows improvement in accuracy on 

using PLS-score instead of PC-score. 

Figure 1a shows temperature, T, as a function of the residence time, 𝜏res, of the well-

stirred reactor. Profile of 𝑇 from proposed PLS-score technique (blue crosses) is 

compared with PC-score (black circles) technique used in [9] and the detailed 

solution (or full-order solution) from Cantera for CH4-O2 mixture at equivalence 

ratio, 𝜙 = 1.0. Figure 1b shows a similar plot, but for the mass-fraction of H2O2. In 

PC-score and PLS-score techniques, the functional relationship between source 

terms of scores and their corresponding scores (𝒁𝑞 or 𝑻𝑞) is linear. It can be readily 

inferred that both linear reduced-manifold modeling techniques allow at least 26% 

reduction (from original 34 chemical species to 25 scores) in chemistry while 

maintaining proximity to the detailed solutions. While visually, the techniques are 

comparable to each other, the normalized root mean squared error, NRMSE, between 

the full-order and reduced-order solutions are lower for PLS-score than PC-score. 

Last column in Table-1 shows significant improvements of at least 20% over PC-

score with the proposed PLS-score technique. 
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Figure 2. Comparison of a) T and b) YCO profiles with respect to 𝜏𝑟𝑒𝑠 from 

proposed PLS-GPR with existing PC-GPR [see Ref. 9] and detailed solution. 

Variable NRMSE PC-GPR NRMSE PLS-GPR % Improvement 

T 6.96 × 10−3 3.34 × 10−3 52 

CH4 2.06 × 10−3 1.39 × 10−3 32.5 

OH 1.10 × 10−2 8.55 × 10−3 22.3 

Table 2. NRMSE for variables with respect to detailed solution. Last column 

shows improvement in accuracy with respect to PC-GPR on using PLS-GPR. 

Figure 2 and Table 2 show results as shown previously, however, now instead of 

using linear PCA or linear PLS based relationship between scores and their source 

terms, we use trained GPR-based regression functions. These regression functions 

nonlinearly map the scores (𝒁𝑞 or 𝑻𝑞) to their corresponding source terms and closes 

the set of equations in reduced space. First, it can be readily inferred that with 

nonlinear, GPR-based functions we see a drastic reduction of number of transported 

scores from 34 chemical species to just 2 scores. Also, compared to 25 scores with 

linear approach only 2 scores are transported to obtain NRMSE of same order as PC-

score or PLS-score. Secondly, we see a significant improvement in accuracy of 20% 

and more with respect to PC-GPR as we use PLS-GPR.  

To demonstrate the generality of our technique, we used PLS-GPR to reduce 

combustion chemistry for C3H8-Air mixture at 𝜙 = 1.0. Figure 3 shows the variation 

of 𝑇 with respect to 𝜏res. We used San-Diego reaction mechanism (50 species) in 

Cantera to model chemistry and obtain detailed solutions. Unlike previous figures, a 

significant improvement in the accuracy of predicted 𝑇 profile is visually evident 

with PLS-GPR. The PLS-GPR predictions (blue crosses) lie closer to the detailed 

solution (solid red curve) than PC-GPR solution (black circles), and we see a 

quantitative improvement of nearly 70% over PC-GPR solution. 

Thus, we can infer that both supervised PLS and its unsupervised counterpart PCA 

can reduce number of transport equations to be solved by nearly 90%. However, PLS 

coupled with nonlinear regression with GPR is shown to significantly improve 

predictions by at least 20% over PC-GPR technique. The improvements being more 
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apparent with complex fuels like propane. PLS is therefore a valuable supervised 

dimensionality reduction technique useful for reducing combustion chemistry. The 

predicted thermo-chemical variables obtained from score transport equations (on 

PLS basis) and subsequent reconstruction are closer to the detailed solution. 

 

Figure 3. Comparison of T with respect to 𝜏𝑟𝑒𝑠 profiles for existing PC-GPR [see 

Ref.10], proposed PLS-GPR, and detailed solution from Cantera. The chemical 

mixture is propane-air at 𝜙 = 1.0. 

 
Figure 4. Comparison of PCA and PLS loadings on 1st loading vector for a) 

methane-oxygen and b) propane-air datasets. 

To understand possible reasons for observed improvements with PLS, we now 

investigate the loadings on the direction of reduced manifolds. The first direction (or 

loading vector) of the manifold identifies dominant structures and consequently most 

relevant variables. Figure 4 shows bar plots representing the loadings on 1st loading 

vectors of PCA and PLS-manifolds. PCA identifies species such as fuel (CH4 or 

C3H8), O2, CO, CO2, H2O, etc. as important, indicated by greater heights of the red 

bars. However, PLS vector also have significant loadings on reaction intermediates 

that appear on fuel break-up, such as CH3, C3H6, C2H4, along with species that appear 

on their eventual oxidation, such as CO and CH2O. This is evident from the heights 

of the blue bars. It is remarkable that PLS identifies additional species that appear in 

reaction pathways of methane and propane oxidation without significant intervention 

from user. We attribute this property of PLS as a reason behind the improvements in 

prediction accuracy discussed previously. 
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Conclusions 

In this study, we used a new supervised dimensionality reduction technique, 

abbreviated as PLS for reducing combustion chemistry. Unlike unsupervised PCA, 

PLS extracts a manifold that is informed about chemical kinetics. We used methane-

oxygen and propane-air mixtures for our investigations. We found that PLS-GPR 

like PC-GPR can reduce transport equations by nearly 90%. However, PLS-GPR is 

found to be more accurate (at least 20%) than PC-GPR technique for assessed 

thermo-chemical variables. The accuracy being more pronounced for propane-air 

mixture encourages utility for complex fuels. Thus, the newly proposed PLS-GPR, 

a reduced manifold modeling technique, is favorable for simplifying combustion 

chemistry and accelerating it. This is attributed to its ability to identify important 

species and radicals that appear in reaction pathways. The training time for PLS-

GPR and PC-GPR were found to be comparable. 
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