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Abstract

Lean hydrogen flames are prone to thermodiffusive instabilities, which have a strong
effect on the structure and dynamics of the flame and can enhance flame speed by
several times. Conventional combustion models perform poorly for unstable
hydrogen flames and often fail in capturing the effects of thermodiffusive
instabilities. In this work, the capability of Convolutional Neural Networks (CNN)
to model the unclosed reaction rate term in Large Eddy Simulations (LES) of
turbulent hydrogen premixed flames is investigated using high-fidelity data from a
large-scale Direct Numerical Simulation (DNS). It is shown that the CNN model can
accurately reproduce the filtered reaction rate over a large range of filter sizes.
Traditional models usually require at least two scalars, e.g., two progress variables
or a progress variable and a mixture fraction, to capture the local fluctuations of
equivalence ratio caused by thermodiffusive effects; remarkably, the CNN-based
model requires only a single progress variable, due to its ability to consider the
topology of the three-dimensional progress variable field, which embeds the
information regarding the fluctuations of equivalence ratio. Finally, the capability of
the CNN to generalize to different filter sizes and filter kernels is investigated.

Introduction

Recent developments in Machine Learning (ML) have granted remarkable success
in several challenging tasks and sparked interest into the possibility to use ML in
turbulence and combustion modelling. ML models are often based on the idea of
training a Neural Network (NN) using high-fidelity data of turbulent (reactive)
flows, which result from Direct Numerical Simulations (DNS) or sophisticated
experiments. In Large Eddy Simulation (LES) of turbulent premixed flames, the
filtered non-linear reaction rate needs to be modelled in terms of the resolved fields.
Convolutional Neural Networks (CNN) have been shown to perform remarkably
well in approximating the filtered reaction rate [1] and the subgrid flame wrinkling
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[2,3]. However, it has been observed in many applications, ranging from speech
recognition to medical diagnosis, that ML-based approaches might perform poorly
when applied to data that are different from those employed for training. In this work,
we investigate the application of CNN-based models for the computation of the
filtered reaction rate in hydrogen flames. In addition, we perform a systematic
analysis of the effect of the filter size used to filter the data for the training of the
Neural Network. This is important in applications, since the filter size in an actual
LES is typically strongly inhomogeneous due for example to grid refinement and
most likely unknown a-priori since it results from a complex interaction of grid
spacing, numerical accuracy, and modelling assumptions.

DNS database

A large-scale DNS of a lean hydrogen flame of Berger et al. [4] is used to train the
CNN-based models and to verify their performance. The DNS features a jet
Reynolds number of Re = 11000 and a Karlovitz number of Ka =~ 15. The simulation
is performed using detailed finite-rate chemistry, non-unity Lewis numbers, and
including the Soret effect. A slot turbulent premixed jet flame with equivalence ratio
¢=0.4, a temperature of T, = 298 K and a pressure of 1 bar, surrounded by a coflow
of burnt gases, is considered.
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Figure 1. HO mass fraction (left) and H,O reaction rate (right) in the DNS of
Berger et al. [4] for a turbulent hydrogen flame in a two-dimensional cut of the

three-dimensional simulation domain.

Impact of thermodiffusive instabilities and related modelling challenges

Figure [1] shows the mass fraction of water and its reaction rate. The flame is
strongly affected by the thermodiffusive instability [4], which causes the typical
overshoots of product mass fraction visible in the H,O mass fraction plot. The
thermodiffusive instability is even more evident in the reaction rate, which is very
large in regions where the flame surface has positive curvature (convex towards the
unburned gas), while the reaction rate is smaller, or even zero, where the curvature
is negative. Because of differential diffusion, hydrogen tends to diffuse preferentially
towards positive-curvature regions, increasing the local equivalence ratio, which
enhances the local reactivity and flame speed for a globally lean flame. A remarkable
fact, observed by Aspden et al. [5,6] and Berger et al. [4], is that turbulence does not
cancel-out the impact of thermodiffusive effects, except for the case of very large
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Karlovitz numbers [5,6], but turbulence and instability interact synergistically with
thermodiffusive effects being even stronger in the turbulent regime than in laminar
flames [4]. As shown in Fig. 2, for a methane at similar conditions, [7] the reaction
rate is always very close to the one dimensional unstretched laminar flame (flamelet),
while there is very large scatter in the hydrogen case.
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Figure 2. Statistics of the fuel reaction rate for a methane [7] (left) and a hydrogen
[4] (center) turbulent flame DNS, compared with a flamelet (one dimensional
unstretched laminar flame). Irreducible error for two different parametrizations of
the reaction rate in a turbulent hydrogen flame [8].

A direct consequence is that reaction rates in hydrogen flames cannot be
parametrized by the progress variable only [8] as usually more than adequate for
methane flames [7]. A second variable, such an additional progress variable, a
mixture fraction, or curvature, is therefore required to parametrize the local reaction
rate. This is quantitatively assessed in Fig. 2, where the irreducible error for the
parametrization with only the progress variable C and with the progress variable and
mixture fraction Z is also shown.
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Figure 3. Architecture of the UNET CNN (left) and pipeline to extract and process
DNS data and CNN training (right).

CNN-based models

An alternative approach to traditional closures of the filtered reaction rate in LES, is
the use of neural networks (NNs). Specifically relevant in the present context are the
Convolutional Neural Networks (CNN) employed in approximating the filtered
reaction rate by Seltz et al. [1] and the subgrid flame wrinkling by Lapeyre et al. [2]
and Attili et al. [3]. A neural network is trained to learn the relation between an input
field, in this case the filtered progress variable, and the desired output, the reaction
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rate. The data for the NN training need to be obtained from high-fidelity databases,
which in the present case are the DNS of the turbulent hydrogen flame. The CNN
architecture employed here is shown in Fig 3. A Convolutional Neural Network
(CNN) derived from a U-net architecture has been designed to consider (multiple)
three- dimensional (3D) input fields, e.g., € and Z, and provide 3D fields as output,
i.e., the filtered reaction rate.

Results

Traditional models for hydrogen flames require to account for the fluctuations of
local equivalence ratio. It has been shown that the fluctuations of equivalence ratio
correlate with the topology of the progress variable field [4], opening to the
possibility to parametrize the reaction rate by adding non-local information of the
progress variable field. Being able to learn the relation between 3D fields (filtered or
not), CNN-based models could be employed for that. A comparison of two CNN
models which employ as input i) only the progress variable and ii) progress variable
plus mixture fraction is shown in Fig. 4. The performance is extremely good in both
cases. It is worth noting that the results for the joint probability density function J-
PDF are shown in log scale to highlight the very small difference. The accuracy for
both models in Fig. 4 are comparable to those shown in Fig. 2 when progress variable
and mixture fractions are used and both are largely superior to a local parametrization
with only the progress variable. We conclude that a CNN with only the progress
variable can be used for the reaction rate in lean hydrogen flames.
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Figure 4. J-PDF of true filtered reaction rate from DNS and predicted values by

the CNN models using only the progress variable (left) and the progress variable

and mixture fraction (right) as inputs of the CNN. The result is shown for a filter
size of Aypgin = Atest = 8 A, where A is the DNS grid cell size.

When employing ML models for subgrid closure, a critical factor to consider is their
ability to extrapolate and generalize. ML models should be able to perform well
when the fields used for training are different from the fields on which the model is
applied. A requirement is the capability to extrapolate at higher Reynolds number
since DNS data used for training cannot be generated at the high Reynolds humber
that is typical of applications. This aspect is discussed by Attili et al. [3] and it is
shown that CNN models are capable to extrapolate at higher Reynolds numbers if
the Reynolds number of the training data is high enough and the ratio between the



JOINT MEETING
THE BELGIAN AND ITALIAN SECTIONS
OF THE COMBUSTION INSTITUTE FLORENCE, ITALY - 2023

filter size and the Kolmogorov scale of turbulence is properly considered. In this
work, we investigate an important aspect related to the size of the filter size. In Fig.
4, the filter size used for training is the same as that used in the model test. In actual
LES applications, the filter size can change significantly in the simulation domain,
for example due to local grid refinement. Even more importantly, the actual filter
size in LES is not known, since it results from a complex combination of grid size,
numerical accuracy, and the formulation of the LES model itself. Therefore, it is
important to assess how the CNN model performs when the filter size used in
training A¢.qin IS NOt the same as that used when the model is tested A;ege. A
summary of this systematic analysis is shown in Fig 5. The model performs
extremely well when the training and test filters are the same A;yqin = Atese, While
a large bias is observed otherwise. This challenge is expected, and it must be
addressed; otherwise, the model would have limited use in a practical LES setting.

o Ao

| Eosf K
L w 3 ra
T 10 S 1w "4
021 Wl oz{ s 0z
| I— i
L/: —" W
0. = 100 oo 0 00
e o2 08 o 10 Pr— C m : o

uuuuuuuuu

Figure 5. J-PDF of true and predicted values for different combinations of the
raining and testing filter sizes. Top to bottom: A¢yqin = 4, Aprgin = 8, Dirain =
16, Ieft to right Atest = 4’, Atest = 8, Atest = 16

The idea considered here is to train with a collection of fields obtained by filtering
DNS data with multiple filter sizes, up to the limit of including data obtained with
all possible filter sizes in a certain range. An assessment of this approach is
summarized in Fig. 6, where the error for several different models (each line
represents a CNN model), obtained by training with different set of data, is shown.
When all the possible filter sizes are used for training (blue line in the right graph)
the model performs extremely well for all sizes of the filter used in the testing data.
As certain filter sizes are progressively removed from the training set, the
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performance degrades in the range of A, that have not been covered by the
training. We conclude that, using multiple filter sizes in training is a viable option to
build a model that works for a wide range of filter sizes, and that the model obtained
in this way is as good as the model trained with a single filter size and applied to test
data with the same filter used for training.
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Figure 6. Error for models trained with different combinations of filter sizes and
tested for filter sizes ranging from A, = 2 to 16. Each line represents a model

trained with a collection of data obtained with the set of filters shown in the legend.
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