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Abstract 

Lean hydrogen flames are prone to thermodiffusive instabilities, which have a strong 

effect on the structure and dynamics of the flame and can enhance flame speed by 

several times. Conventional combustion models perform poorly for unstable 

hydrogen flames and often fail in capturing the effects of thermodiffusive 

instabilities. In this work, the capability of Convolutional Neural Networks (CNN) 

to model the unclosed reaction rate term in Large Eddy Simulations (LES) of 

turbulent hydrogen premixed flames is investigated using high-fidelity data from a 

large-scale Direct Numerical Simulation (DNS). It is shown that the CNN model can 

accurately reproduce the filtered reaction rate over a large range of filter sizes. 

Traditional models usually require at least two scalars, e.g., two progress variables 

or a progress variable and a mixture fraction, to capture the local fluctuations of 

equivalence ratio caused by thermodiffusive effects; remarkably, the CNN-based 

model requires only a single progress variable, due to its ability to consider the 

topology of the three-dimensional progress variable field, which embeds the 

information regarding the fluctuations of equivalence ratio. Finally, the capability of 

the CNN to generalize to different filter sizes and filter kernels is investigated. 

 

Introduction 

Recent developments in Machine Learning (ML) have granted remarkable success 

in several challenging tasks and sparked interest into the possibility to use ML in 

turbulence and combustion modelling. ML models are often based on the idea of 

training a Neural Network (NN) using high-fidelity data of turbulent (reactive) 

flows, which result from Direct Numerical Simulations (DNS) or sophisticated 

experiments. In Large Eddy Simulation (LES) of turbulent premixed flames, the 

filtered non-linear reaction rate needs to be modelled in terms of the resolved fields. 

Convolutional Neural Networks (CNN) have been shown to perform remarkably 

well in approximating the filtered reaction rate [1] and the subgrid flame wrinkling 
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[2,3]. However, it has been observed in many applications, ranging from speech 

recognition to medical diagnosis, that ML-based approaches might perform poorly 

when applied to data that are different from those employed for training. In this work, 

we investigate the application of CNN-based models for the computation of the 

filtered reaction rate in hydrogen flames. In addition, we perform a systematic 

analysis of the effect of the filter size used to filter the data for the training of the 

Neural Network. This is important in applications, since the filter size in an actual 

LES is typically strongly inhomogeneous due for example to grid refinement and 

most likely unknown a-priori since it results from a complex interaction of grid 

spacing, numerical accuracy, and modelling assumptions.    

 

DNS database 

A large-scale DNS of a lean hydrogen flame of Berger et al. [4] is used to train the 

CNN-based models and to verify their performance. The DNS features a jet 

Reynolds number of Re = 11000 and a Karlovitz number of Ka ≈ 15. The simulation 

is performed using detailed finite-rate chemistry, non-unity Lewis numbers, and 

including the Soret effect. A slot turbulent premixed jet flame with equivalence ratio 

φ=0.4, a temperature of Tu = 298 K and a pressure of 1 bar, surrounded by a coflow 

of burnt gases, is considered.  

 

 
Figure 1. H2O mass fraction (left) and H2O reaction rate (right) in the DNS of 

Berger et al. [4] for a turbulent hydrogen flame in a two-dimensional cut of the 

three-dimensional simulation domain.   

 

Impact of thermodiffusive instabilities and related modelling challenges 

Figure [1] shows the mass fraction of water and its reaction rate. The flame is 

strongly affected by the thermodiffusive instability [4], which causes the typical 

overshoots of product mass fraction visible in the H2O mass fraction plot. The 

thermodiffusive instability is even more evident in the reaction rate, which is very 

large in regions where the flame surface has positive curvature (convex towards the 

unburned gas), while the reaction rate is smaller, or even zero, where the curvature 

is negative. Because of differential diffusion, hydrogen tends to diffuse preferentially 

towards positive-curvature regions, increasing the local equivalence ratio, which 

enhances the local reactivity and flame speed for a globally lean flame. A remarkable 

fact, observed by Aspden et al. [5,6] and Berger et al. [4], is that turbulence does not 

cancel-out the impact of thermodiffusive effects, except for the case of very large 
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Karlovitz numbers [5,6], but turbulence and instability interact synergistically with 

thermodiffusive effects being even stronger in the turbulent regime than in laminar 

flames [4]. As shown in Fig. 2, for a methane at similar conditions, [7] the reaction 

rate is always very close to the one dimensional unstretched laminar flame (flamelet), 

while there is very large scatter in the hydrogen case. 

 

     
Figure 2. Statistics of the fuel reaction rate for a methane [7] (left) and a hydrogen 

[4] (center) turbulent flame DNS, compared with a flamelet (one dimensional 

unstretched laminar flame). Irreducible error for two different parametrizations of 

the reaction rate in a turbulent hydrogen flame [8].  

 

A direct consequence is that reaction rates in hydrogen flames cannot be 

parametrized by the progress variable only [8] as usually more than adequate for 

methane flames [7]. A second variable, such an additional progress variable, a 

mixture fraction, or curvature, is therefore required to parametrize the local reaction 

rate. This is quantitatively assessed in Fig. 2, where the irreducible error for the 

parametrization with only the progress variable C and with the progress variable and 

mixture fraction Z is also shown.  

      
Figure 3. Architecture of the UNET CNN (left) and pipeline to extract and process 

DNS data and CNN training (right).  

 

CNN-based models 

An alternative approach to traditional closures of the filtered reaction rate in LES, is 

the use of neural networks (NNs). Specifically relevant in the present context are the 

Convolutional Neural Networks (CNN) employed in approximating the filtered 

reaction rate by Seltz et al. [1] and the subgrid flame wrinkling by Lapeyre et al. [2] 

and Attili et al. [3]. A neural network is trained to learn the relation between an input 

field, in this case the filtered progress variable, and the desired output, the reaction 

3.4. Post-processing Chapter 3. Methodology
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Figure 3.3: Modified U-Net architecture. The purple rectangles represent vector fields

(feature maps). The blue rectangles indicate concatenated data. The height of the

rectangle is representative of the dimensions of the feature map field. The width of the

rectangles indicates the number of channels, and the value is given above. Image

adapted from Xing et al. [ 5]

training, and 200 are used for validation. It is important to use separate blocks for

testing and validation in order to limit over-fitting.

3.3.1 Model parameters

Model parameters including the learning rate, decay rate and number of epochs re-

quired for convergence are inherently tied to the data set being used to train the model.

The convergence of a ML model can be defined as when the error (training and valida-

tion loss) approaches a minimum value (global or local) with a decaying trend.

The study by Lapeyre et al. used a value of 0.01 as the learning rate and 20% as the

decay rate. These values were initially used to perform the training with the hydrogen

DNSdata but resulted in models that did not converge. The learning rate and decay rate

chosen for use in the remainder of the investigation was 0.0001 and 10% respectively.

Fig. 3.4 shows the training and validation loss (as mean square errors) over 200 epochs

for the original learning parameters, and the ones decided for use in the study.

The networks run for 200 epochs, which is more than sufficient to ensure that both the

training and validation loss are minimised.

After each epoch, the current weightings used in the CNN are saved, allowing them to

be accessed in the future. Once the training was complete, the set of weightings with

the lowest validation loss was chosen to be tested.

3.4 Post-processing

The testing of the CNN was done using the validation blocks. These can be regarded as

’unseen’ as they were not used to influence the weightings of the CNN.
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rate. The data for the NN training need to be obtained from high-fidelity databases, 

which in the present case are the DNS of the turbulent hydrogen flame. The CNN 

architecture employed here is shown in Fig 3. A Convolutional Neural Network 

(CNN) derived from a U-net architecture has been designed to consider (multiple) 

three- dimensional (3D) input fields, e.g., 𝐶̅ and �̅�, and provide 3D fields as output, 

i.e., the filtered reaction rate. 

 

Results 

Traditional models for hydrogen flames require to account for the fluctuations of 

local equivalence ratio. It has been shown that the fluctuations of equivalence ratio 

correlate with the topology of the progress variable field [4], opening to the 

possibility to parametrize the reaction rate by adding non-local information of the 

progress variable field. Being able to learn the relation between 3D fields (filtered or 

not), CNN-based models could be employed for that. A comparison of two CNN 

models which employ as input i) only the progress variable and ii) progress variable 

plus mixture fraction is shown in Fig. 4. The performance is extremely good in both 

cases. It is worth noting that the results for the joint probability density function J-

PDF are shown in log scale to highlight the very small difference. The accuracy for 

both models in Fig. 4 are comparable to those shown in Fig. 2 when progress variable 

and mixture fractions are used and both are largely superior to a local parametrization 

with only the progress variable. We conclude that a CNN with only the progress 

variable can be used for the reaction rate in lean hydrogen flames. 

 

 
Figure 4. J-PDF of true filtered reaction rate from DNS and predicted values by 

the CNN models using only the progress variable (left) and the progress variable 

and mixture fraction (right) as inputs of the CNN. The result is shown for a filter 

size of Δ𝑡𝑟𝑎𝑖𝑛 =  Δ𝑡𝑒𝑠𝑡  =  8 Δ, where Δ is the DNS grid cell size. 

 

When employing ML models for subgrid closure, a critical factor to consider is their 

ability to extrapolate and generalize. ML models should be able to perform well 

when the fields used for training are different from the fields on which the model is 

applied. A requirement is the capability to extrapolate at higher Reynolds number 

since DNS data used for training cannot be generated at the high Reynolds number 

that is typical of applications. This aspect is discussed by Attili et al. [3] and it is 

shown that CNN models are capable to extrapolate at higher Reynolds numbers if 

the Reynolds number of the training data is high enough and the ratio between the 
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filter size and the Kolmogorov scale of turbulence is properly considered. In this 

work, we investigate an important aspect related to the size of the filter size. In Fig. 

4, the filter size used for training is the same as that used in the model test. In actual 

LES applications, the filter size can change significantly in the simulation domain, 

for example due to local grid refinement. Even more importantly, the actual filter 

size in LES is not known, since it results from a complex combination of grid size, 

numerical accuracy, and the formulation of the LES model itself. Therefore, it is 

important to assess how the CNN model performs when the filter size used in 

training Δ𝑡𝑟𝑎𝑖𝑛 is not the same as that used when the model is tested Δ𝑡𝑒𝑠𝑡. A 

summary of this systematic analysis is shown in Fig 5. The model performs 

extremely well when the training and test filters are the same Δ𝑡𝑟𝑎𝑖𝑛 = Δ𝑡𝑒𝑠𝑡, while 

a large bias is observed otherwise. This challenge is expected, and it must be 

addressed; otherwise, the model would have limited use in a practical LES setting.  

 
Figure 5. J-PDF of true and predicted values for different combinations of the 

raining and testing filter sizes. Top to bottom: Δ𝑡𝑟𝑎𝑖𝑛 = 4, Δ𝑡𝑟𝑎𝑖𝑛 = 8, Δ𝑡𝑟𝑎𝑖𝑛 =
16; left to right: Δ𝑡𝑒𝑠𝑡 =  4, Δ𝑡𝑒𝑠𝑡 = 8, Δ𝑡𝑒𝑠𝑡  =  16.  

 

The idea considered here is to train with a collection of fields obtained by filtering 

DNS data with multiple filter sizes, up to the limit of including data obtained with 

all possible filter sizes in a certain range. An assessment of this approach is 

summarized in Fig. 6, where the error for several different models (each line 

represents a CNN model), obtained by training with different set of data, is shown. 

When all the possible filter sizes are used for training (blue line in the right graph) 

the model performs extremely well for all sizes of the filter used in the testing data. 

As certain filter sizes are progressively removed from the training set, the 

Chapter 4. Results 4.1. Single-Filter Models (SFMs)

Figure 4.6: A grid showing SFMs with varying ∆ t est ing. Each row represents a different

model, from the top: Box(4), Box(8), Box(16). Each column represents a different ∆ t est ing,

from the left : 4, 8, 16.
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performance degrades in the range of  Δ𝑡𝑒𝑠𝑡 that have not been covered by the 

training. We conclude that, using multiple filter sizes in training is a viable option to 

build a model that works for a wide range of filter sizes, and that the model obtained 

in this way is as good as the model trained with a single filter size and applied to test 

data with the same filter used for training.  

 
Figure 6. Error for models trained with different combinations of filter sizes and 

tested for filter sizes ranging from Δ𝑡𝑒𝑠𝑡 = 2 to 16. Each line represents a model 

trained with a collection of data obtained with the set of filters shown in the legend.  
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4.2. Mult i-Filter Models (MFMs) Chapter 4. Results

4.2.3 Filt er Size Interpolat ion

Interpolat ion tests comprised the penult imate test ing stage in this study. They involved

creat ing MFMs with various ∆ t r aining combinat ions and then test ing their effect iveness on

unseen filter sizes (∆ t est ing /2 ∆ t r aining). Based on the evidence of sect ion 4.2.2, all models

created used v = 200. In all the tests so far only 3 filter sizes for 2 filter types have been

used, along with an unfiltered reference case. For this test ing, all integers of ∆ from 2-16

for box and Gaussian filter types were required, which took several days of preprocessing.

Following this the models themselves needed training which also took some t ime.

Init ially 4 models were trained: Box(2,4,6,8,10,12,14,16), Box(4,8,12,16), Box(8,16)

and Box(2,10). The first 3 were chosen as each one doubles the space between ∆ t r aining,

while Box(2,10) was chosen to compare to Box(8,16) to see the difference between models

with the same number of ∆ t r aining but shifted. These models were then tested with box-

filtered data with ∆ t est ing ranging from 2 to 16 in unit increments. Various stat ist ics were

gathered for each of these tests including the NMSE which can be seen in fig. 4.13 (along

with the equivalent models/ tests done with Gaussian-filtered data).

The most obvious trend from these plots is that models with smaller gaps between

∆ t r aining have lower error even for ∆ t est ing /2 ∆ t r aining, the most obvious example of this

can be seen for ∆ t est ing = 3 for all models. Another clear t rend is that higher values of

∆ t est ing interpolate better than lower values. This can be seen at 4 ∆ t est ing 8 for

Box(4,8,12,16) and Gaussian(4,8,12,16); in this range there is a visible rise in NMSE

whereas for larger filter sizes there is no visible rise despite the same space between ∆ t r aining

values. Another area where this t rend manifests is in the difference between Box(8,16)

and Box(2,10). The spike between values of ∆ t r aining for Box(2,10) reaches 0.9 while for

Box(8,16) it is less than 0.15. A more general interpretat ion might be that smaller ∆s are

more different to each other than larger ∆s, this is supported by Box(8,16) having a lower

error at ∆ t est ing = 4 than Box(2,10) despite its closest filter being four sizes away rather

than two suggest ing that ∆s 4 and 8 are more similar (at least from a ML perspect ive)

than ∆s 4 and 2. These trends can also be seen in the Gaussian plot although less severely.

Figure 4.13: Plots showing NMSE changing with ∆ t est ing for box-filtered models/ tests

(left ) and Gaussian-filtered models/ tests (right)
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On the basis of these observat ions, two new models were trained for each filter type.

One contained all filters from 2-16 while the other had ∆ t r aining values which double

sequent ially (2,4,8,16). The lat ter of these attempts to opt imise a 4 ∆ t r aining model by

having a higher concentrat ion of small ∆s. In fig. 4.14 the first model has been contrasted

with the model containing all even ∆s between 2 and 16. The opt imised 4 ∆ t r aining model

has been contrasted with the originial, evenly-spaced 4 ∆ t r aining model.

As expected, the first new model flat tened the small error spike seen in the even ∆s

model at ∆ t est ing = 3. However beyond this it does not appear to produce any significant

improvement, despite using a training pool almost twice as large. From this it could be

concluded that , unless small, odd ∆s are required, there is no reason to train models with

the full compliment of ∆s. The opt imised 4 ∆ t r aining model also performs as expected,

completely removing the spike at ∆ t est ing = 2 an leading to a much smaller rise at

10 ∆ t est ing 12. While this does provide further evidence that interpolat ion works

bet ter at larger ∆ , it is not possible to judge whether this model would be adequate in the

range 2 ∆ t est ing 16 without test ing these models in an LES to determine what level

of NMSE causes an unacceptable/ uncont rolled error.

Figure 4.14: Plots showing NMSE changing with ∆ t est ing for box-filtered models/ tests (left )

and Gaussian-filtered models/ tests (right) (dot ted lines denote previously-shown models)

The next step was to test if these models could accurately predict an output given an

input filtered using a different filter type. The above models were tested again with the

test data filter type swapped and fig. 4.15 was the result . At ∆ t est i ng 5 the results are

similar to fig. 4.14 but above this the errors become much more substant ial. From this

point the models with equivalent ∆ t r aining start to behave in not iceably different ways and

drawing meaningful conclusions becomes more difficult , for example Box(4,8,12,16) and

Gaussian(4,8,12,16) behave very different ly with the Gaussian model doing a significant ly

bet ter job than the box model. It may be concluded that Gaussian models can predict box

data with lower error than box models predict ing Gaussian data, but conclusion ignores the

models with all ∆s 2-16 which appear to performs similarly. These plots also show a rise,

peak and fall for most models but without a larger range of ∆ t est i ng it is difficult to predict

what the complete shape of these curves may be.
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