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Abstract 

The aim of this work is to demonstrate the use of sparse sensing for the prediction of 

the 3D chemiluminescence field of a flame from the line-of-sight integrated 

chemiluminescence signal. Sparse sensing is a machine-learning technique that 

leverages the intrinsic low-dimensionality of physical phenomena to predict the state 

of the system given few measurements. This makes it a good candidate to be 

employed in Computed Tomography of Chemiluminescence (CTC), an imaging 

technique used to reconstruct the 3D chemiluminescence field from 

chemiluminescence images. The methodology is demonstrated on a virtual 

experiment based on the data coming from the Large Eddy Simulation of a jet flame 

in a vitiated coflow, where OH is employed as a surrogate of OH*. 

 

Introduction 

Combustion technologies will have to drastically reduce their carbon emissions by 

adopting zero-carbon fuels to meet the objective set by the European Commission 

[1]. The introduction of these fuels involves a radical change in the design and 

operation of combustion system, and the short timeline for the development of these 

new technologies does not allow a traditional trial-and-error approach. 

Luckily, the advancement in combustion modelling [2,3], as well as the development 

of new diagnostic techniques [4], have produced a set of tools that can be used for 

the rapid design and validation of new combustion systems. However, these cannot 

always be transferred from lab-scale to industrial applications.  

A simpler diagnostic tool that is extensively used in industrial applications is 

chemiluminescence [5]. Chemiluminescence is a phenomenon in which light is 

emitted from excited species produced by chemical reactions. In the context of 

combustion, chemiluminescence is often associated with the excited species OH* 

and CH* [6]. The advantage of chemiluminescence over laser diagnostics is that it 

does not require an external light source, and thus can be employed also when the 

optical access is limited. The downside lies in the fact that the signal is line-of-sight 

integrated, resulting in incomplete information about the 3D distribution of the 
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chemiluminescent sources. To reconstruct the 3D chemiluminescence field, the 

Computed Tomography of Chemiluminescence (CTC) is generally employed [7]. 

CTC generally involves the acquisition of multiple 2D chemiluminescence images 

at different viewing angles, which are combined using tomographic reconstruction 

algorithms to generate a 3D representation of the chemiluminescence field.  

The goal of this paper is to first develop such an algorithm based on sparse sensing, 

and then to demonstrate its capability by reconstructing the 3D OH field from 2D 

OH images. Sparse sensing is a machine-learning technique that exploits the intrinsic 

low-dimensional representation of physical, to predict the state of the system using 

few measurements. The mathematical framework of sparse sensing was developed 

by Candes and Tao [8], and techniques for the selection of the optimal sensors’ 

placement were developed by Manohar et al. [9]. Recently, we have successfully 

applied sparse sensing to the prediction of the 3D temperature field of the ULB 

furnace given few temperature measurements [10]. 

 

Computed tomography of chemiluminescence 

The CTC problem is essentially an inversion problem in which the objective is to 

reconstruct the 3D field 𝒇(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓), given its projection on the camera sensor 

𝒑(𝑥𝑝, 𝑦𝑝) and the point spread function 𝑪(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝑥𝑝, 𝑦𝑝) that relates the amount 

of light produced by a point source onto the sensor’s plane: 

Figure 1 shows a schematic representation of the CTC mathematical framework. In 

computed tomography, 𝒇 is usually discretized into 𝑛 voxels and the light emitted 

from each voxel is focused by the camera system onto the sensor’s plane.  

The size 𝑠 of 𝒑 depends on the number of pixels in the 𝑥𝑝 and 𝑦𝑝 directions, as well 

as on the number of images such that 𝑠 = 𝑛𝑥𝑝
× 𝑛𝑦𝑝

× 𝑛𝑖. 

The point spread function depends only on the position and characteristics of the 

camera system. The computation of 𝑪 is essentially a ray-tracing problem, where the 

objective is to compute the path of the light from the source to the observer.  

The size of 𝑪 can quickly become computationally challenging. For example, if the 

system is discretized using 𝑛 =  64 × 64 × 64 and the resolution of the sensor is 

512 × 512 with 5 cameras installed, the size of 𝐶 = 𝑠 × 𝑛 = 389120 × 262144.  

 𝒑 = 𝑪𝒇 (1) 

Figure 1. Schematic representation of the CTC mathematical framework. 
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Sparse sensing 

Sparse sensing assumes that physical phenomena admit a low-dimensional 

representation in a transforming basis. This fact can be leveraged to achieve the 

prediction of the system’s state using a small set of sensors. 

The first step in the sparse sensing algorithm is to reduce the dimensionality of the 

system’s state 𝒇 by finding a transforming basis 𝚽, such that: 

where the size 𝑟 of the low-dimensional vector 𝝍 is much smaller than 𝑛. 

An obvious choice for computing the transforming basis is to use the Proper 

Orthogonal Decomposition (POD) [11], because it ensures that the 𝑟-order 

truncation minimizes the 𝑙2 norm reconstruction error. 

To compute the POD basis, we can employ the Singular Value Decomposition 

(SVD): 

The matrix 𝑭 contains 𝑚 system’s states 𝒇 arranged as column vectors. In our case, 

𝑭 includes multiple timesteps of the 3D chemiluminescence field. The matrix 𝑼 

contains the spatial modes, while the matrix 𝑽 contains the POD temporal 

coefficients. The matrix 𝜮 is a diagonal matrix containing the singular values, which 

are a measure of the amount of information captured by each mode.  

The linear system in Eq. 1 can be then rewritten as: 

where 𝒂 is the low-dimensional POD projection of 𝒇. The matrix 𝚯 has dimensions 

𝑠 × 𝑟, and the conditioning number of this matrix is much lower than the 

conditioning number of the matrix 𝑪, provided that some conditions between the 

placement of sensors with respect to the POD modes are met [12]. This means that 

the new linear system can be solved by inverting the matrix 𝚯, using conventional 

approaches such as least-squares regression.  

To improve the prediction accuracy of the low-dimensional projection, physical 

constraints such as positivity can be introduced, so that the constrained objective 

function becomes: 

 𝒇 = 𝚽𝝍 (2) 

 𝑭(𝑟, 𝑡) = 𝑼(𝑟)𝚺𝑽𝑇(𝑡) (3) 

 𝒑 = 𝑪𝒇 = 𝑪𝑼𝒂 = 𝚯𝒂 (4) 

 𝒂 ∗ =  argmin
𝒂

|| 𝒚 −  𝚯𝒂||2
2  

 𝒔. 𝒕.    𝐔𝒓a > 0 (5) 

Figure 2. Average and instantaneous OH mass fraction distribution. 
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Numerical dataset 

The numerical dataset comes from the 3D Large Eddy Simulation (LES) of the Jet 

in Hot Coflow (JHC). The OpenFOAM based, finite-rate solver FiReSMOKE is 

employed for the simulation. The code solves Favre-filtered mass, momentum and 

energy conservation equations along with the filtered transport equations for the 

species. The filtered species source terms are determined from the Partially-Stirred 

Reactor (PaSR) turbulence-chemistry interaction model [3]. The PaSR model 

separates each computational cell into a reactive structure where combustion takes 

place and a surrounding fluid where only mixing occurs.  

The simulation domain includes the first 180 mm downstream of the fuel jet exit in 

the axial direction and 90 mm in the radial direction from the centerline. The domain 

is discretized as a 3D cylinder structured mesh made of approximately 1.5M cells. 

We generate inlet turbulence for all three streams using the LEMOS inflow 

generation method [13]. The inlet profiles for temperature and H2O, CO2 and O2 

mass fractions are taken from the experimental measurements in Dally et al. [14].  

The kinetic mechanism employed for the detailed reference simulation is the GRI3.0 

without the NOx sub-mechanism. It consists of 36 species and 219 reactions. The 

minimum turbulent kinetic energy resolved in the grid is 80% in every cell and above 

90% in most locations of interest. 
 

Results 

The dataset contains 61 timesteps, of which the first 60 were employed as training 

data to build the POD modes matrix 𝑼, while the last timestep was used to test the 

sparse sensing model. 

Figure 2 shows the average and instantaneous (last timestep) OH mass fraction 

distribution. Before computing the SVD, the dataset has been downscaled and 

interpolated on a 64 × 64 × 64 regular grid, where each voxel has a volume equal 

to around 22 mm3. 

Figure 3 shows the projection 𝑝 on the sensor’s plane for the last timestep, which is 

used as input to the sparse sensing model in Equation 4. The obtained prediction is 

Figure 3. Projection of the instantaneous OH mass fraction distribution on the 

sensor’s plane (𝑝). 
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compared to the observed OH mass distribution in the parity plot shown in  Figure 

4. The prediction is overall accurate with a coefficient of determination 𝑅2 ≈ 0.9. 

The comparison between the observed and predicted OH mass distribution for 

different slices is shown in Figure 5. The model sometimes underpredict or 

overpredict the pixel values, but the overall distribution is remarkably close to the 

original one. 

 
Conclusions 

This work demonstrates how to employ a sparse sensing framework to solve the CTC 

problem. A 3D LES of the JHC has been used as a synthetic dataset, and the OH 

mass fraction distribution has been employed as a surrogate for the OH* 

chemiluminescence signal. The results show that the model can predict the 3D OH 

field with good accuracy using a single projection, which is much less than what is 

Figure 4. Parity plot of the observed and predicted OH mass fraction distribution. 

The red line indicates the perfect correlation. 

Figure 5. Comparison between the observed and predicted OH mass fraction for 

different slices.  
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generally needed for conventional CTC techniques. This indicates that the proposed 

technique could be also applied on industrial experiments with very limited optical 

access. The next step will be to validate this technique on experimentally measured 

chemiluminescence emissions. 
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