Numerical investigation of a single coal particle moving in a hot O2/CO2 atmosphere

A. Richter*, M. Kestel*, P.A. Nikrityuk* and B. Meyer**

*CIC VIRTUHCON, Technische Universität Bergakademie Freiberg, 09596 Freiberg
**Institut für Energieverfahrenstechnik und Chemieingenieurwesen, Technische Universität Bergakademie Freiberg, 09596 Freiberg

In this work the partial oxidation of a spherical coal particle (diameter 2 mm) moving in a hot environment consisting of O2 and CO2 is investigated numerically. The main goal of this work is to study the influence of particle velocity and surrounding gas temperature and its composition on the carbon consumption rates. The particle investigated is placed in a uniform oxygen-carbon dioxide mixture at different Reynolds numbers corresponding to the laminar flow regime. The ambient temperature was systematically varied in the range of 1500–3000 K, and the mass fraction of O2 was varied between 12 and 36%. To solve the Navier-Stokes equations for the flow field coupled with the energy and species conservation equations, a finite volume solver was applied. In addition to the solid carbon the model incorporates six gaseous chemical species (O2, CO, CO2, H2, H2O and N2). The reaction mechanism is identically to the reduced one proposed in [1]. It includes the water gas shift reaction (CO+H2O→CO2+H2 [2]), two additional homogeneous reactions (2CO+O2+H2O→CO2+H2O [3], CO2+H2→CO+H2O [2]) and the three heterogeneous reactions C+CO2→2CO [4], 2C+O2→2CO [5], C+H2O→CO+H2 [4]. The ambient medium is assumed to be nearly dry (YH2O=0.001). One of the findings is that the fluid flow past the reactive particle stays laminar for a larger range of Reynolds numbers in comparison to isothermal flows, that means Re_krit becomes larger than 270 (see Figure below). Additionally the influence of the O2/CO2 ratio on the carbon consumption and flame around the particle is analyzed.

References