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Abstract
In the turbulent premixed reactive flows considered in this study, i.e. large Damköhler and
Reynolds numbers, the flamelet regime of turbulent combustion applies and the scalar dissi-
pation rate and mean reaction rate are inter related. In this situation various algebraic models
for the mean chemical rate that are obtained from an equilibrium of the dominant terms of
the transport equation for the scalar dissipation rate, are evaluated through their application
to flames stabilized in a turbulent stagnating flow. An asymptotic analysis is first performed
and results obtained through the resulting one-dimensional calculation are compared with the
experimental data of Li et al. [1]. Eventually, three-dimensional CFD calculations including
suited algebraic closures to represent the turbulent transport terms are carried out. Results are
satisfactorilly compared to the experimental data of Cho et al. [2].

Introduction
In this work we describe premixed turbulent combustion in terms of a unique progress vari-

able c(xk, t), with c = 0 in the fresh unburned mixture and c = 1 in combustion products. Thus,
c is solution of the following balance equation
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where uk is the velocity field, ρ(c) the density of the mixture, D the coefficient of molecular
diffusion and ω(c) is the chemical reaction rate. In both frameworks of RANS or LES approaches
to solve turbulent reacting flows an averaged balance equation for the progress variable must be
solved. Following Eq.(1), such an averaged equation is written as:
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(ρũkc̃)+

∂

∂xk

(
ρu′′kc

′′
)
− ∂

∂xk

(
ρD

∂c

∂xk

)
=ω(c), (2)

where c = c̃+ c′′ and the Favre averaged progress variable c̃ = ρc/ρ has been introduced.
As it is well known the closure of the mean chemical rate ω(c) appearing in Eq.(1) is one

of the most important subproblems in the field of turbulent combustion modeling. A closed ex-
pression for this term can be obtained by using modeling assumptions that depend on the regime
of turbulent combustion under consideration. In the present contribution we take advantage of
recent advances made in the modeling of the scalar dissipation rate:
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,



see for example [3] [4] [5] [6], to analyze the problem raised by the numerical prediction of the
mean reaction rate in a premixed turbulent flame. As it has been well known since the pioneering
work of Bray [7], in reactive flows at large Damköhler and Reynolds numbers, the flamelet
regime of turbulent combustion applies and the scalar dissipation rate and mean reaction rate
are inter related through

ω(c) = 2ρε̃c/(2cm − 1), (3)

where cm is a constant parameter depending only on the statistical distribution of c through an
individual flamelet, whose value lies in the range 0.7 − 0.8. This relationship implies that, in
the limiting case of infinitely large Damköhler number, molecular dissipation of the small scale
fluctuations is controlled by chemistry. Accordingly a closed equation for the scalar dissipation
rate can be used together with the system of equations for the mean velocity and progress
variable fields as in the early proposal made by Borghi and Dutoya [8]. A more simple strategy
is to consider an algebraic closure for the scalar dissipation rate. The simplest closure for this
quantity is the classical relaxation model that writes:

ε̃c = CB c̃′′2ε̃/k̃. (4)

Provided that some similarities exist between the scalar and velocity spectra, this model is
often retained to represent the dissipation of a passive scalar. For reactive scalar, different
algebraic closures have been proposed, see for example [9] [10] [11] [12][13], by considering
an equilibrium between the dominant terms of the transport equation for ε̃c.

Here we apply this strategy to stagnating turbulent flame situations where the flame can be
considered as an ensemble of laminar like local flamelets. In a first step an asymptotic analysis
of the corresponding one-dimensional reacting flow is performed. Then, results from a full
three-dimensional numerical simulation of the balance equations for the various flow quantities
are given and discussed.

Asymptotic Analysis : description of the mean scalar equation
Stagnating turbulent premixed flames have been extensively used to analyze and validate

closure models for turbulent reacting flows at large Damköhler number and relatively small in-
coming turbulence intensity. In such a geometry (see Fig. 1-a) the turbulent flame is stabilized
in a stagnating flow formed by impinging a uniform stream of premixed reactants onto a solid
planar surface. These studies were made possible thanks to a relatively simple similarity and
asymptotic analysis of these reacting flows as well as the existence of a large set of experimental
data involving a wide range of values for the mean flow induced strain rate, a quantity directly
related to the positioning of the flame brush in the flow [1] [14]. The main objectives of the
asymptotic studies were to assess models for the mean velocity field [15], for turbulent trans-
ports of mass and momentum [16], and eventually for the mean chemical rate ω(c). As shown
by Bray et al. [15], in the flamelet regime of turbulent combustion and under the assumption
of small intensity incoming turbulence and large Reynolds number, the equation for the mean
combustion progress variable in a stagnating turbulent flow can be written as:(

RW − δNB

2
(1− 2c̃)

)
c̃′ = DT (Z)

(1 + τ)c̃(1− c̃)
(1 + τ c̃)2

(5)

where ()′denotes differentiation with recpect to the axial non-dimensional coordinate Z = z/d
and d is the distance between the injection plane and the solid wall. R and W are the dimen-
sionless mean density field and axial velocity respectively defined along the axis of the flow as
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Figure 1: a: Schematic of the stagnating turbulent flame, b: mean structure of the flame brush
corresponding to the Li et al. experiment [1]

[15]:
R(Z) = ρ/ρ1 ; W (Z) = w̃(r, Z)/w1 (6)

where w̃ is the axial component of the mean velocity field, and the subscript 1 denotes quantities
taken at the exit plane Z = 1. The dimensionless mean density R is related to c̃ through the
equation of state, namely

R(1 + τ c̃) = 1 (7)

where τ = ρ1/ρ0 − 1 is the expansion factor. The subscript 0 denotes quantities taken at the
plane Z = 0.

In Eq. (5) the second term of the left hand side represents turbulent transport of the progress
variable [17]. This introduces (i) the Bray number NB = τSl/k

1/2
1 where Sl and δl are laminar

flamelet velocity and thickness respectively, and (ii) the intensity of the incoming turbulence
δ = k1/w

2
1. The RHS of Eq. (5) is proportional to the turbulent Damköhler number DT , a

function of the turbulent time scale associated to the scalar c, and whose form as a function of
Z is still unknown at this point. In the closure system that we are considering in the present
work DT can be related to the scalar dissipation rate by using Eqs. (3) and (5). This yields

DT (Z) =
2(1 + τ c̃)

(2cm − 1)(1 + τ)c̃(1− c̃)
Ec(Z) (8)

where we have introduced the dimensionless dissipation rate Ec defined as:

Ec(Z) = ε̃c(r, Z) d/w1 (9)

We now proceed by using the following strategy: for a given experiment a function DT,exp(c̃)
can be determined through Eq. (5) i.e. knowing R , W , c̃ ′ from the experimental data.
DT,exp(c̃) can then be compared with the calculated DT (c̃) obtained from Eq. (8) provided
Ec(Z) can be determined through an equation, either differential or algebraic. However, at



large Damköhler and Reynolds numbers it has been shown (see for example [6]) that the bal-
ance equation for scalar dissipation Ec may often be reduced to an equilibrium between its
leading production terms. This results in an algebraic form for the mean scalar dissipation
rate, function of the turbulence time scale ε̃/k̃ and various parameters characteristic of both the
turbulent flow and local flamelets. A general form for Ec can be written as:

Ec(Z) = F (τ,NB, Da;Z) (10)

In Eq. (10) Da = Sld/δlw1 is the Damköhler number associated to the geometry of the mean
flow field and K = k̃/k1, E = dε̃/w1k1 are the scaled turbulent kinetic energy and its dissipa-
tion rate respectively. Such algebraic models have been derived in particular by Borghi and his
coworkers [12][13], Bray and Swaminathan [9], Kuan et al. [10], and Kolla et al. [11]. There-
fore these models can be used in Eq. (8) to predict numerically the evolution of DT through the
flame brush, and comparisons can be drawn between experimental data provided by Li et al. [1]
and numerical data issued from the various models.

The model of Bray and Swaminathan [9]
From an order of magnitude analysis of the various production terms appearing in the bal-

ance equation for the scalar dissipation rate ε̃c , Bray and Swaminathan have deduced the fol-
lowing expression for the scalar dissipation rate [9]:
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where Sl and δl are the laminar flame burning velocity and thickness respectively. As proposed
in [9], the values of the three constant are Cεc = 0.1 , CB1 = 0.24 , CB2 = 0.21. Using now the
formalism set forth in the previous section for the stagnating turbulent flame, i.e. Eq. (9), Eq.
(11) can be re written as:
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)
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where the flamelet assumption has been used to express the variance of the progress variable,
namely c̃′′2 = c̃(1− c̃).

The model of Kuan et al. [10]
The analysis made by Kuan et al. [10] leads to the following expression for the scalar

dissipation rate:
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This expression depends inter alia on the Kolmogorov turbulent velocity scale, i.e. uK =

k̃1/2R
−1/4
T , where RT = k̃2/νε̃ is the turbulent Reynolds number. We follow Kuan et al. [10]

and use Cφ = 4 and C∗φ = 1.2. Using again the formalism introduced to describe turbulent
stagnating flames leads to:
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The model of Kolla et al. [11]
A further algebraic model for the scalar dissipation rate has been recently derived by Kolla

et al. [11], from a detailled analysis of the full balance equation for this quantity. In this model
the dissipation scalar rate is written as:

ε̃c =
1
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ε̃

k̃

)
c̃(1− c̃) (15)

or using the turbulent stagnating flames formalism:

Ec(Z) =
1

β

(
(2K∗c − τC4)Da + C3

E

K

)
c̃(1− c̃) (16)

where the various constants take the following values: β = 10, K∗c = 0.8τ , C3 = 1.5K
1/2
al /(1+

K
1/2
al ), C4 = 1.1/(1 + Kal)

0.4. Kal ∼ δl/τKSl is the Karlovitz number, calling τK the Kol-
mogorov time scale τK = R

−1/2
T k̃/ε̃.

The model of Borghi and coworkers [12][13]
The model proposed by Borghi and his coworkers is also deduced from an order of mag-

nitude analysis of the production terms appearing in the RHS of the balance equation for the
scalar mean dissipation rate, followed by proposals for the closure of the dominant contributions
[12][13]. The final expression for the scalar mean dissipation rate is given by:

ε̃c =

(
1 +

3

2
Cεc

Sl

k̃1/2

)
A1

β

ε̃

k̃
c̃(1− c̃) (17)

Using the scaling introduced for the stagnating flame geometry leads to:
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where A1, β and Cεc are model constants. In the calculation relative to the turbulent stagnating
flame we also retain Cεc = 0.1, and the ratio A1/β is adjusted so that the value Ec(c̃ = 0) is
similar to the one given by the other models.

Transport equation for the mean scalar dissipation rate
An alternative to the algebraic models described in the previous sections is to use a transport

equation for the scalar mean dissipation rate. Restricting here ourselves to the case of stagnating
turbulent flames exposed above, and using the Borghi and coworkers [12][13] closure model to
express the leading production terms, such an equation for Ec(Z) can be written as:

WE ′c = − β[
1 + 3

2
CεcNB/(τK1/2)

] E2
c

c̃(1− c̃)
+ A1

E

K
Ec (19)

where W is the axial velocity component defined earlier. In agreement with the asymptotic
analysis used to solve the equations for the turbulent stagnating flame, i.e. vanishingly small
turbulence intensity δ , turbulent transport is absent from this equation. This equation can be
solved once the velocity field W (Z), the progress variable field c̃(Z) and the turbulent time
scale E/K(Z) corresponding to the experimental data provided by Li et al. [1] are known (see



Bray et al. [16]). To avoid singularities on both reactants and burned products sides, a solution
to this equation is sought in the form Ec = c̃(1− c̃)G(Z) . Using Eqs. (5) and (8) this procedure
results in the following equation for G :

WG′ = G2

[
2c̃− 1

cm − 1/2
− β[

1 + 3
2
CεcNB/(τK1/2)

]]+ A1
E

K
G (20)

As W (Z = 0) = 0 , the boundary condition to be used to integrate this equation for G is

G(Z = 0) =
A1

F (0)

E(0)

K(0)
(21)

with the following expression for F (0):

F (0) =
β[

1 + 3
2
CεcNB/(τK1/2)(0)

] − 1

(cm − 1/2)
(22)

Asymptotic analysis : numerical results and comparison with experimental data
The evolution of DT (c̃) through the flame brush is shown in Fig. 2. In this figure we have

represented the numerical results obtained by using the four algebraic models exposed in the
previous sections. As stated above, DT (c̃) is evaluated from Eq. (8) and the turbulent flow
field is assumed to be known from experimental data. In this calculation the various parameters
introduced by the models have been given the values corresponding to the Li et al. experi-
mental data [1],[17], namely τ = 6, NB = 9.8 , Da = 51 , d/w1 = 8.3 10−3 s, Sl = 0.37
ms−1. We have also reported the results obtained by using the classical relaxation model, i.e.
Ec ∼ c̃(1− c̃)E/K , a model a priori valid to represent the dissipation of a passive scalar. The
value of the constant introduced by this model is taken to be the same as the one of A1/β in
the Borghi and coworkers algebraic model. Though a scattering of the numerical data on both

[9]
[11]
[10]

[12][13]
a

(19)

b

Figure 2: a: Comparison of models and deduced experimental distributions of DT for the
experimental data of Li et al. [1] (triangles), b: Comparison of calculations of DT through the
flame brush, using equilibrium and non equilibrium Borghi and coworkers models [12][13]



sides of the experimental points can be observed, it must be noted that qualitative evolution of
DT through the flame is correctly represented by the models. Both models of Bray and Swami-
nathan [9] and Kolla et al. [11] overpredict the evolution of DT , though the agreement with
the experimental data is much improved by the latter. It must be recalled here that the values of
the various constants introduced by these two models have been given those obtained through
comparisons with DNS data of planar turbulent flames (see [9] and [11]). An adjustment of
these values would be needed to fair the numerical results with the experimental points. At
the other end Kuan et al. and Borghi and coworkers models tend to underpredict the evolution
of DT and then of the mean chemical rate. Concerning the use of this model, Fig. 2-b pro-
vides a comparison between the evolution of DT obtained from the algebraic model and the
evolution of the same quantity obtained by solving the balance equation for the mean dissipa-
tion rate Eq. (19). The relatively small difference between the two calculations shows clearly
that production terms on the RHS of Eq. (19) stay dominant through the flame brush, so that
the equilibrium between these terms represented by the algebraic Borghi and coworkers model
prevails. The mean structure of the turbulent flame within the stagnating flow is shown in Fig.
1-b.

This asymptotic analysis highlights two different model behaviours: (i) those directly con-
nected to ε̃/k̃ i.e. the linear relaxation model, Kuan et al. model [10] and Borghi and coworkers
model [12] [13] and (ii) those made of two contributions: one proportional to the inverse of the
turbulent time scale ε̃/k̃ and another one proportional to the inverse of the laminar chemical
time Sl/δl i.e. Bray and Swaminathan [9] and Kolla et al. [11]. It is found that the former tends
to underpredict the evolution of DT whereas the latter overpredicts the chemical reaction rate
through the stagnating turbulent flames. Nevertheless, it must be also noticed that the models
made of two contributions [9] [11] perform well as long as the values of the constants they
involve are properly selected. To conclude, the experimental profile of DT presented in Figure
2 can be well represented by using the models made of two contributions. On the contrary the
profile obtained when using one of the models made of only one contribution does not fit the
experimental data even by adjusting the model constants.

3D numerical simulations : description of the experimental test case and computational
model

Results from a full three-dimensional numerical simulation of the stagnating turbulent pre-
mixed flame are now presented and discussed. The description of the experimental setup consid-
ered for the simulation can be found in the work of Cho et al. [2]. The corresponding turbulent
reactive flow is sketched in Figure 1-a. The incoming flow impinges a wall located 7.5cm (d)
downstream of the injection nozzle which has a diameter L of 5cm. The velocity w1 at the exit
of the nozzle is 5m/s and the incoming turbulence is generated by a grid. The equivalence ratio
of the fully premixed methane-air mixture is unity and the jet is surrounded by a co-flow of air.
The main characteristics of the flow are summarized in Table 1.

Table 1: Experimental conditions

Fuel L d w1 w′1 lT Φ τ δL SL
CH4 5cm 7.5cm 5m/s 30cm/s 2mm 1 6.7 0, 11mm 43cm/s
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Figure 3: Mixture fraction on the boundaries of the three-dimensional computational domain

The computational domain has a diameter of 20cm and begins at the exit of the nozzle, it
represents half of the physical space. The mesh is made up of 900000 cells. The impinging
wall diameter is 10cm. Figure 3 shows the mixture fraction field as obtained on the different
boundaries of the three-dimensional computational domain.

Balance equations are solved for the momentum equation associated to a k̃ − ε turbulence
model and a mean progress variable transport equation, Eq.(2). The boundary conditions for
turbulent quantity k̃ and ε at the inlet jet of methane and air are respectively k̃1 = 3/2w′21 and
ε1 = cµk̃

3/2
1 /lT (cµ = 0.09). A passive scalar, i.e. mixture fraction, is also considered to follow

the mixing between the coflow of air and the jet of reactants. It is important to notice that the key
quantities for this turbulent reactive flow, namely mean progress variable and turbulence fields
are now numerically caculated whereas in the above asymptotic analysis all these quantities
were obtained from measurements.

The mean chemical source term is closed by using Eq.(3). Then, thanks to Eq.(3), two
different algebraic models for the mean scalar dissipation rate, i.e. Bray and Swaminathan [9]
described by Eq.(11) and Borghi and coworkers [12][13] described by Eq.(17), are evaluated
on this geometry. These two models have been chosen as representative of the two different
behaviours observed in the asymptotic analysis: (i) the Borghi and coworkers model is propor-
tional to the inverse of a turbulent time scale whereas (ii) the Bray and Swaminathan model
involves two terms, (i) one proportional to the inverse of a turbulent time scale and (ii) an-
other one proportional to the inverse of a chemical time scale. It is noteworthy that, in this
latter model, the term proportional to the turbulent time scale remains negligible everywhere.
This characteristic is a consequence of the configuration considered characterized by a weak
intensity of turbulence.

The turbulent scalar flux is represented by using either a gradient law (case GD) or an
algebraic model able to deal with counter-gradient turbulent diffusion (case CGD). This latter



Table 2: Model constants retained in numerical simulations

Gradient law
(case GD)

Robin et al.[18]
Eq.(23) (case CGD)

Bray and Swaminathan [9]
Eq.(11)

Cεc = 0.10, λ = 0
CB1 = 0.07, CB2 = 0.21

Cεc = 0.10, λ = 0.2
CB1 = 0.09, CB2 = 0.21

Borghi and coworkers[12][13]
Eq.(17)

Cεc = 0.10, λ = 0
A1/β = 8

Cεc = 0.10, λ = 0.2
A1/β = 10

model results from the recent proposal made by Robin et al.[18] and writes:

ρu′′kc
′′ =

(
τSLρc′′2λ− ρνT/σ‖∇c̃‖

)
M̃k (23)

The flamelet assumption allows us to retain the maximum value of the scalar variance, i.e.
ρc′′2 = ρc̃(1 − c̃). The parameter λ related to fluctuations of local flame normal vector [19]
is considered to be constant in the simulation, (see Table 2). The turbulent viscosity is νT =
cµk̃

2/ε. and the mean orientation of the turbulent scalar flux is approximated by the following
relation: M̃k = ∇c̃/‖∇c̃‖.

These models of turbulent combustion have been implemented in the Computational Fluid
Dynamics (CFD) code developed by EDF: Code Saturne, see Archambeau et al. [20]. Code Saturne
is a parallel general purpose three-dimensional low Mach number CFD code based on a finite
volume method. The time marching scheme is based on a prediction of the velocity field fol-
lowed by a pressure correction step. Equations for k̃ and ε and scalars fields are resolved af-
terwards. Discretization in space is based on the fully conservative, unstructured finite volume
framework, with a co-located arrangement for all variables.

3D numerical simulations : numerical results and comparison with experimental data
The model constants CB1(Bray and Swaminathan model) and A1/β (Borghi and coworkers

model) used in the numerical simulations presented here, have been selected so that the obtained
position of the calculated 3D turbulent flame is as realistic as possible. The BML constant cm

a b
GD CGD

Figure 4: a: Numerical field of mean chemical rate ω/ρ (s−1) and b Numerical streamlines and
iso-c values (0.05, 0.25, 0.5, 0.75, 0.95) associated to a gradient law (left: case GD) and Robin
and coworkers model [18] (right: case CGD) (Bray and Swaminathan model)



has been set to 0.88 in both cases. The numerical field of the mean chemical rate and the
streamlines obtained by using the Bray and Swaminathan model are presented in Figure 4-a.
Similar qualitative results are obtained by using either the Bray and Swaminathan model or the
Borghi and coworkers model.

Figure 4-b shows streamlines and iso-values of the progress variable obtained by using
either the gradient law or the Robin and coworkers model for the scalar turbulent flux [18].
As expected, taking into account the counter-gradient turbulent diffusion leads to a thinner and
more realistic flame brush.

To conclude, it must be noticed that any of these models lead to a mean structure of the
turbulent flame qualitatively similar to the one observed in experiments. Figure 5 shows the
evolution of the progress variable and the axial velocity component along the symmetry axis.
The two figures on the top have been obtained from a classical turbulent eddy viscosity assump-
tion (GD approximation) whereas the two figures at the bottom have been obtained thanks to
the generalized (case CDG) algebraic closure recently introduced by Robin et al. [18]. The
profiles of the mean progress variable reported on the left side of Fig. 5 do not evidence strong
differences between the results obtained by using (i) the model of Bray and Swaminathan, and
(ii) the model of Borghi and coworkers. However the velocity profile is found to be much
more sensitive to the choice retained for the representation of small scale scalar mixing ef-
fects. The corresponding results confirm that taking into account the chemical time scale δl/Sl
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Figure 5: Comparison of the numerical profiles of the mean progress variable and axial velocity
component along the symmetry axis with experimental data of Cho et al. [2], a and b: Gradient
law, c and d: Robin et al. model for scalar turbulent flux [18]



improves the agreement between the results of numerical simulations and the available experi-
mental data. Finally it is worth noting that the use of a turbulent transport closure that accounts
for the possible occurence of counter-gradient diffusion effect also clearly improves the quality
of the agreement obtained between experimental data and numerical simulations even for first
moment quantities.

Conclusions
Various models for the mean scalar dissipation rate have been evaluated through their ap-

plication to two different premixed turbulent flames stabilized in stagnating turbulence. In a
first step these models are compared in the context of an asymptotic analysis conducted for
small levels of incoming turbulence and large values of the Reynolds number. In this asymp-
totic analysis velocity field and scalar quantities are simultaneously used with models for the
scalar dissipation rate. Models are then evaluated through a comparison with experimental data
conducted in terms of a turbulent Damköhler number. In a second step of the investigation, a
complete three-dimensional numerical simulation of the experimental setup is performed and
the models for the scalar dissipation rate are evaluated in terms of the mean progress variable
and the mean velocity field.

Two kinds of models can be identified, these directly connected to ε̃/k̃ i.e. the linear relax-
ation model, Kuan et al. model [10] and Borghi and coworkers model [12] [13] and those made
of two contributions: one proportional to the inverse of the turbulent time scale ε̃/k̃ and another
one proportional to the inverse of the laminar chemical time Sl/δl i.e. Bray and Swaminathan
[9] and Kolla et al. [11]. It is found that the former kind tends to underestimate the chemical
reaction rate whereas the latter overestimates the chemical reaction rate through the stagnating
turbulent flame. Concerning now the transport equation for the mean scalar dissipation rate as
applied to this situation of stagnating turbulent flames, results obtained by solving this transport
equation are very closed to those obtained by considering the equilibrium of the dominant terms
of this equation. This suggests that algebraic models for the mean scalar dissipation rate are ap-
propriate to describe this kind of strained turbulent flames. Accordingly these algebraic closures
have been retained to perform the three-dimensional numerical simulations of premixed flames
in stagnating turbulence and it was found that the models made of two contributions [11] that
include the influence of chemical time scale perform the best.
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