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Abstract: In this communication, we consider the possibility of stabilizing intrinsically

unstable premixed flames using a feedback. We examine this concept using a premixed

flame on a porous-plug burner for values of the parameters that trigger spontaneous flame

oscillations. The enforced feedback relates the mass flow rate with the heat flux to the

porous-plug burner. A linear stability analysis of the steady states with and without

feedback were carried out. We showed that the oscillatory behavior can be suppressed by

the feedback and an unstable steady state can be stabilized. The results of the stability

analysis were successfully compared with the numerical integration of the time-dependent

equations.

Introduction

There were a number of theoretical studies in the past concerned with the onset of insta-

bilities in the form of cells or flame oscillations of the flat premixed flame on a porous-plug

burner, see [1]-[3]. Recently, Kurdyumov and Matalon identified in [4] the influence of

the mass flow rate, the upstream heat loss to the plug, its thickness and porosity and

the Lewis number on the onset of the oscillatory instability by using the constant-density

aproximation.

Due to its practical importance, the control of the intrinsic instabilities of premixed

flames has always been in mind of researchers and engineers. The papers by Dowling and

Morgans [5] and by de Goey et al. [6] review recent theoretical and experimental works

in the field of flame stabilization.

Particularly relevant to our research is the analysis carried out by de Goey et al. [6]

regarding the control of flames in porous materials. They carried out a stability analysis

by introducing a mass flow rate that varied harmonically in time with frequency ω, and

a feedback parameter Z defined in terms of the Zeldovich number and of the adiabatic

flame temperature. The parametric variation of ω and Z identifies the regions of flame

stability.

As an attempt of stabilizing the flame, the study presented below uses the changes in

the heat transfer at the surface of the porous material as a feedback parameter to change

dynamically the mass flow rate of the mixture of fuel and oxydizer.



Formulation

In the present paper we consider a stream of gas containing a premixture of fuel and

oxidizer emerging from a porous plate. The gas stream is uniform with dimensional mass

flux m̃. The flame adjust its location relative to that of the plug depending on the fractional

mass flux of reactants composing the mixture into the flame and the degree of heat loss to

the plate. The thickness of the porous plate is considered to be large compared with the

corresponding thermal flame thickness. The thermal conductivity of the plate is assumed

sufficiently high to maintain the gas temperature in the plug constant and equal to the

upstream temperature T0. In what follows, x denotes the normal to the porous-plug

coordinate while y and z are the transverse coordinates.

The mixture is assumed to be deficient in fuel, so that it is enough to follow its mass

fraction, denoted by Y and normalized by its upstream value Y0. The mass fraction

of the oxidizer, which is in abundance, remains nearly constant. The chemical reaction

in the gas is modeled by an overall step that converts fuel to products at a mass rate

proportional to Y with the Arrhenius temperature dependence, Ω̃ = Bρ2Y exp(−E/RgT ),

where B, E and Rg is the pre-exponential factor, the activation energy and the universal

gas constant. For the sake of simplicity, this paper deals with the well-known diffusive-

thermal model, according to which the density of the mixture ρ, the heat capacity cp, the

thermal diffusivity DT , and the fuel molecular diffusivity D are all assumed constant.

The enforced feedback consists in the linear relation between the mass flux, m̃, and

the heat flux to the porous plug

m̃ = m̃0 + A

(
∂T

∂x

∣∣∣∣
x=0+

− q̃0

)
, (1)

where m̃0, q̃0 and A are prescribed values. If q̃0 is chosen equal to the temperature gradient

at the plug calculated for the steady-state solution with m̃ = m̃0, then condition (1) does

not alter the steady-state.

The laminar flame speed SL is used below as a unit speed, the thermal thickness

of a planar adiabatic flame δT = DT/SL as a unit length and DT/S
2
L as a unit time.

The dimensionless mass flux becomes m = m̃/ρSL and the dimensionless reaction rate is

Ω = DT Ω̃/ρY0S
2
L. Using the adiabatic flame temperature Te = T0 +QY0/cp to define the

non-dimensional temperature rise θ = (T − T0)/(Te − T0), the non-dimensional governing

equations in the gaseous phase (0 < x < ∞) become

∂θ

∂t
+m

∂θ

∂x
= ∆θ + Ω, (2)

∂Y

∂t
+m

∂Y

∂x
=

1

Le
∆Y − Ω, (3)

where ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. The non-dimensional reaction rate ω takes the

form

Ω =
β2

2Leu2
p

Y exp

{
β(θ − 1)

1 + γ(θ − 1)

}
. (4)

The flame standoff position xf is defined as the point where the reaction rate reaches its

maximum value, Ω(xf ) = Ωmax.



The consideration of the porous-plug adds a difficulty that we avoid by prescribing

a fuel mass fraction flux at the surface of the porous plug by means of a Robin-type

condition, see [7, 8]. Then, equations (2)-(3) are to be solved for 0 < x < ∞ with the

following boundary conditions

x = 0 : θ = 0, m(Y − 1)− Le−1∂Y/∂x = 0. (5)

x → ∞ : ∂θ/∂x = ∂Y/∂x = 0. (6)

The non-dimensional feedback relation (1) becomes

m = m0 + α

(
∂θ

∂x

∣∣∣∣
x=0

− q0

)
, (7)

where q0 = dθ0/dx|x=0 is the extent of (non-dimensional) heat loss to the plug for the

steady-state solution (∂/∂t = 0) calculated with m = m0. Here α = AQY0/(ρcpSL) is the

non-dimensional feedback parameter. The case α = 0 represents the porous plug burner

without feedback.

The following non-dimensional parameters appear in the above equations: the Zel’dovich

number, β = R(Te−T0)/RgT
2
e , the Levis number, Le = DT/D, the heat release parameter,

γ = (Te − T0)/Te and α is the intensity of the feedback. In what follwos, the Zel’dovich

number and the heat release parameter were kept fixed at β = 10 and γ = 0.7 consid-

ering these values as representative for combustion processes. The factor up = SL/UL

arises in Eq.(4) if the planar flame speed, SL, is used to define the thermal flame thickness

δT = DT/SL. Here, UL =
√
2ρBDTβ−2 exp(−E/2RgTe) is the asymptotic value of the

velocity of the planar flame calculated in the limit β ≫ 1. The factor up is introduced for

convenience in order to have the dimensionless planar flame speed equal to one for finite

valued of β, see [4] for details.

Steady solutions

For the steady-state solution, denoted hereafter by subindex ”0”, ∂/∂t = 0 is enforced

in Eqs.(2)-(3). The steady-state equations were solved using a Gauss-Siedel method with

over-relaxation. The temperature, mass fraction and reaction rate profiles are exemplified

in Fig. 1(a), calculated for Le = 1.2 and m0 = 0.3. The steady standoff flame position xf

is shown in Fig. 1(b) as a function of the non-dimensional flow rate calculated for Le = 1.2.

With increasing values of the flow rate, xf finds its minimum at some intermediate values

and then rapidly increases, approaching infinity as m0 → 1. Anticipating the results of

the stability analysis, the solid segment in the figure corresponds to stable states while the

dashed segment does to unstable ones. All the results shown here are in agreement with

those reported in [4], where the mass transfer inside the porous plug was considered.

Stability analysis

The steady-state solution is perturbed as usual with small harmonic perturbations

θ = θ0(x) + ϵF (x) exp(λt+ ikyy + ikzz),

Y = Y0(x) + ϵG(x) exp(λt+ ikyy + ikzz),
(8)
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Figure 1: (a) The steady-state distributions of the temperature, mass fraction and reaction

rate calculated for Le = 1.2, m0 = 0.3, β = 10 and γ = 0.7. (b) The dependence of the

flame standoff position xf on m showing the rang of stable (solid segments) unstable

(dashed segments) states, for Le = 1.2, β = 10 and γ = 0.7

where λ is a complex number, whose real part represents the growth rate, ky and kz are

the wavenumber components and ϵ ≪ 1 is the perturbation amplitude. The linearized

eigenvalue problem obtained when substituting (8) into the appropriate equations reduces

(2)-(3) to

λF +m0F
′ + αF ′(0)θ′0 = F ′′ − k2F + AF +BF,

λG+m0G
′ + αF ′(0)Y ′

0 = Le−1(G′′ − k2G)− AF −BF,
(9)

where k =
√
k2
y + k2

z and

A =
β3Y0

2Leu2
p[1 + γ(θ0 − 1)]2

exp

{
β(θ0 − 1)

1 + γ(θ0 − 1)

}
, B =

β2

2Leu2
p

exp

{
β(θ0 − 1)

1 + γ(θ0 − 1)

}
are both functions of x. The primes denote here and below the differentiation with respect

to x.

The boundary conditions at the porous-plug and far downstream take the form

F (0) = m0G(0)− Le−1G′(0) + αF ′(0)(Y0(0)− 1) = 0;

F ′(∞) = G′(∞) = 0.
(10)

Stability results

The numerical method described recently in [9] was applied to calculate the eigenvalue

with a greatest real part, or the main eigenvalue. This eigenvalue determines completely if
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Figure 2: (a) The growth rate λR as a function of the mass flux m for several value of Le,

computed for m = 0.3, α = 0 and k = 0. (b) The growth rate λR as a function of k for

several values of the intensity of the feedback, α, computed for Le = 1.2 and m0 = 0.3

(unstable steady-state without feedback).
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Figure 3: (a) The growth rate λR as a function of α computed for two values of Le and

m0 = 0.3; the open circles mark the critical values αc. (b) The frequency of oscillations

λI as a function of α.

a given steady-state is stable or not. If the real part of this eigenvalue is positive, λR > 0,

then the steady-state is unstable, and, conversely, if its real part is nonpositive, λR ≤ 0,



the steady state is linearly stable.

Consider first the case without feedback, α = 0. As it was shown in [4], at criticality

the fastest growing wavenumber is k = 0, at least for not very high values of the Levis

number, implying that the instability is associated with planar pulsations. In Fig. 2(a)

the growth rate λR is plotted as a function of the flow rate m for different Le. In the

equidiffusive case Le = 1 the real part of λ is always negative and, therefore, the flame

remains stable (for β = 10, γ = 0.7). An increase in Le implies positive growth rates λR

for sufficiently low values of the flow rate.

The dependence of λR on the wavenumber k is plotted in Fig. 2(b) as a function of the

feedback parameter α. This figure confirms that the fastest growing mode corresponds to

k = 0 even when the feedback mechanism is considered.

The dependence of λR on the feedback parameter α is illustrated in Fig. 3(a) for two

values of Le calculated with k = 0. As can be seen, when α increases, the growth rate

λR reduces to dissappear for values of the feedback parameter α > αc, when the flame

becomes stable for this given set of parameters. This critical value, shown in Fig. 3(a)

with open circles, increases with increasing values of the Lewis number. It is interesting

to see that the frequency of oscillations λI , plotted in Fig. 3(b), does not change much

with the increasing of the intensity of the feedback.
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Figure 4: Temporal variations of the flame standoff distance xf for three increasing values

of α. Calculated for m0 = 0.3 and Le = 1.2.
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Figure 5: Temporal variations of the flow rate in the case with feedback, calculated for

m0 = 0.3, Le = 1.2 and α = 0.5.

Results of time-dependent simulations

The unsteady nonlinear equations (2)-(3) were integrated numerically subject to the

boundary conditions (5)-(6) and the feedback condition (7). In Fig. 4 we show the time-

history of xf for three values of α, all calculated with Le = 1.2 and m0 = 0.3. For α = 0

the solution evolves to a time-periodic state, with the flame moving back and forth with

constant frequency and amplitude. When the feedback parameter is increased (the case

α = 0.3), the amplitude of oscillations is significantly reduced and the oscillation frequency

remains unmodified. Further increase of this parameter α = 0.5 leads, after a relatively

short transient, to a stable state with the flame located at xf ≃ 5.5. For this particular

case, the critical value of the feedback intensity αc is sightly above 0.3.

Finally, the temporal evolution of the mass flow rate m is shown Fig. 5 for the same

set of parameters used above. After the transient, the mass flow rate m achieves the

steady state with a a value equal to the steady mass flow rate m0 initially imposed in

condition (7).

Conclusions

This paper represents a first tentative approach to the concept of flame stabilization

by using the feedback based on the variations of the heat transfer to the surface of the

porous plug to control the mass flow rate.

The stability analysis of the problem has shown a growth rate λR greatly affected

by the feedback parameter α, reducing the amplitude of the oscillation induced by the

thermal-diffusive instabilities. Eventually, for values of α > αc, the real part of the growth

rate becomes negative at all values of the wavelength, making the flame unconditionally

stable for given values of m0 and Le. The time-dependent calculation showed the mass

flow rate m that oscillates during the stabilization process to achieve a final value equal

to that of the steady case m0 after a some time.

Even though more research is needed to understand completely the implications the

feedback parameter α on the stability of the flame, this first initial attempt introduces a

technique worth being further considered.



Acknowledgements. This research was supported by the Spanish MCI under project

#ENE2008-06515-C04-02 (VK) and by the Comunidad de Madrid under projects #S2009ENE-

1597 (VK) and CCG10-UPM/ESP-5617 (MSS).

References

[1] S.B. Margolis, Combust. Sci. Technol. 22, 143 169 (1980).

[2] G. Joulin, Combust. Flame 46, 173185 (1982).

[3] J. Buckmaster, SIAM J. Appl. Math. 43 (6), 13351349 (1983).

[4] V.N. Kurdyumov, M. Matalon, Combust. Flame 153, 105–118 (2008).

[5] A. Dowling, A. Morgans, Annual Review of Fluid Mechanics,37, 151-182 (2005).

[6] L.P.H. de Goey, J.A. van Oijen, V.N. Kornilov, J.H.M. ten Thije Boonkkamp, Proc.

Combust. Inst., 33, 863-886 (2011).

[7] P.V. Danckwerts, Chem. Eng. Sci, 2, 1-13 (1953).

[8] J.O. Hirschfelder, C.F. Curtiss, D.E. Campbell, Proc. Combust. Inst. 4, 190-211

(1953).

[9] V.N. Kurdyumov, Combust. Flame doi:10.1016/j.combustflame.2010.11.011 (2011).


