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Abstract 
We investigate the influence of gas compression on the developed stages of flame 
acceleration in smooth-wall and obstructed channels. We demonstrate analytically that gas 
compression moderates the acceleration rate. We also perform numerical simulations within 
the problem of flame transition to detonation. We show that flame acceleration undergoes 
three distinctive stages: 1) initial exponential acceleration in the incompressible regime, 2) 
gas compression moderates the process, so that the exponential acceleration regime goes over 
to a much slower one, 3) eventual saturation to a steady (or statistically-steady) high-speed 
deflagration velocity, which may be correlated with the Chapman-Jouguet deflagration speed. 
The possibility of deflagration-to-detonation transition is demonstrated. 
 
Introduction 
For a long time, deflagration-to-detonation transition (DDT) remained one of the least 
understood processes of hydrodynamics and combustion science in spite of its extreme 
importance. During the process, a usual slow flame accelerates spontaneously with velocity 
increase by 3 orders of magnitude until an explosion occurs and develops into a self-sustained 
detonation [1-8]. The first qualitative explanation of the flame acceleration in tubes with slip 
walls has been suggested by Shelkin in 40-ies [2]. The Shelkin mechanism involved thermal 
expansion of the burning gas, non-slip at the tube walls and turbulence as the main 
components of flame acceleration. When a flame propagates from a closed tube end, the 
burning gas expands and pushes a flow of the fuel mixture, see Fig. 1. The flow becomes 
strongly non-uniform because of non-slip at the walls. The non-uniform velocity distribution 
makes the flame shape curved, which increases the burning rate and drives the acceleration. 
Turbulence provides additional distortion of the flame front and compensates for thermal 
losses to the walls. Acceleration of turbulent flames was observed in numerous experiments 
[3-7], still, for a long time there was almost no progress in the quantitative theoretical 
understanding of the process because of the complications related to turbulent burning. 
Despite a century of intensive research, turbulence in general and turbulent burning in 
particular belong to the most difficult problems of modern physics. 

Considerable progress in understanding the flame acceleration started recently within the 
approach of a laminar flow with the direct numerical simulations and the analytical theory 
supporting each other. The analytical theory of laminar flame acceleration in smooth tubes 
has been developed and validated by extensive numerical simulations in Refs. [9-11]. In tubes 
with obstacles, Bychkov et al. [12,13] identified a new ultra-fast mechanism of flame 
acceleration, which is much stronger than the classical Shelkin scenario. By use of analytical 
theory and numerical simulations, papers [12,13] demonstrated that delayed burning between 
the obstacles creates a powerful jet-flow, driving the acceleration. The new mechanism is 
independent of the Reynolds number, with turbulence playing only a supplementary role. 
Still, in both configurations of smooth-wall and obstructed tubes (channels), the theory of 
flame acceleration [9-13] employed the limit of an incompressible flow, which holds with a 
good accuracy at the beginning of the process. For example, a typical value of the unstretched   



 
Figure 1. Schematic of the Shelkin mechanism of flame acceleration and the influence of gas 

compression. 
 
laminar flame velocity fU  for hydrocarbon flames is about 40 cm/s, which is much smaller 
than the sound speed sc  in the fuel mixture. Initial values of the Mach number related to 
flame propagation are quite small 310/ −≅≡ sf cUMa , hence the effects of gas compression 
may be neglected at the beginning of the process. The theories [9-13] predicted fast initial 
acceleration of laminar flames in micro-scale tubes in the exponential regime. Recent 
experiments in ethylene-oxygen mixtures [14] confirmed the possibility of flame acceleration 
and DDT in micro-tubes with diameters about 1 mm. At the same time, the experiments [14] 
demonstrated a number of specific effects beyond the scope of the incompressible flow 
models [9-13]; e.g. the saturation of the flame velocity to a steady value below the Chapman-
Jouguet (CJ) detonation speed. The saturation velocity can be interpreted as the CJ 
deflagration speed [1], which is subsonic with respect to the fuel mixture just ahead of the 
flame front and supersonic in the reference frame of the tube walls. Similar saturation of the 
flame propagation speed to a supersonic value with respect to an observer has been detected 
experimentally in channels with obstacles; this regime is often called "fast flames" [4,5]. In 
order to explain these effects, one has to account for gas compression in both geometries of 
smooth tubes and tubes with obstacles. 

In this report, we investigate the influence of gas compression on flame acceleration at 
the developed stages in both geometries. We demonstrate analytically that gas compression 
moderates the acceleration rate. We also perform direct numerical simulations within the 
problem of flame transition to detonation. We show that flame acceleration undergoes three 
distinctive stages: 1) initial exponential acceleration in the incompressible regime, 2) gas 
compression moderates the process; consequently, the exponential acceleration regime goes 
over to a much slower one, 3) eventual saturation to a steady high-speed deflagration velocity. 
The saturation velocity of deflagration may be correlated with the CJ deflagration speed. The 
possibility of DDT is demonstrated. 

 
The role of gas compression in moderating flame acceleration in smooth tubes 
Figure 1 illustrates schematically the Shelkin mechanism of flame acceleration in tubes with 
smooth walls, as well as the moderating role of gas compression in the process. At the 
incompressible stage, burning involves decrease of the gas density by a factor bf ρρ /≡Θ , 
which is typically rather large. For the burning rate wU  (roughly, the laminar flame speed fU  
multiplied by a scaled increase in the flame surface area due to curvature), the flame front 
produces the extra volume of the gas wU)1( −Θ  per unit time. At the initial incompressible 
stage of flame acceleration, the burnt gas is mostly at rest due to the boundary conditions at 
the closed tube end, so that the extra volume results in a flow of the fuel mixture only. 
Accounting for gas compression, we obtain a counter-flow in the burnt matter in addition to 
the main flow in the fuel mixture. Initially, the role of the counter-flow is as small as 



 
Figure 2. Scaled burning rate for 8=Θ , 4.1=γ , 30Re =  as predicted by the theory for 

310;0 −=Ma  (lines) and found in numerical simulations (markers). 
 

1<<Ma , but it increases as the flame accelerates. Quantitative theory of the flame 
acceleration in a smooth 2D channel of half-width R  has been developed in Ref. [15] 
considering influence of gas compression as Taylor series for a small parameter 1<<Ma . 
According to Ref. [15], the velocity fZ& , found for the average position ),()( txztZ ff =  of 

the elongated flame front ),( txzz f= , obeys the differential equation 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

f

f
f

f
f U

Z
MaBZ

R
U

Z
&

&&& 1σ , (1) 

where the scaled rate σ ,  

 
2

2

2

1
)1(Re

Re41
Re

)1(Re
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
Θ

+
−

=σ , (2) 

characterizes exponential acceleration at the initial incompressible stage,  
)/exp( RtUUZ fff σ∝& , as found in Ref. [9], ν/Re RU f=  plays the role of the Reynolds 

number related to a planar flame, B  is a numerical factor found in Ref. [15] as 
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As described by Eq. (1), the flame accelerates in the exponential regime at the initial stage, as 
long as the front velocity is sufficiently low in comparison with the sound speed, 1/ <<sf cZ& . 
As the flame velocity approaches the sound speed, the role of gas compression (expressed by 
the term ff UZMa /&∝ ) increases and thereby moderates the acceleration regime. 
Qualitatively, the solution to Eq. (1) describes the transition from the initial exponential 
regime of flame acceleration to almost linear acceleration and then to saturation of the flame 
velocity as  



 

Figure 3. Evolution of the flame tip velocity for 8=Θ , 4.1=γ , 7.6Re = , 310−=Ma  until 
the full-developed CJ detonation. 
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However, quantitatively, Eqs. (1), (3) hold only as long as the term 1)/exp( <<Θ RtUMaB fσ  
is small and may be treated as a correction in Taylor series. Figure 2 compares the analytical 
theory Eqs. (1), (3) to the numerical simulations of Ref. [9]; we find good agreement of the 
theory and the simulations as long as the flame speed is relatively small. 

The role of gas compression at the developed stages of flame acceleration has been 
demonstrated in Ref. [16] using direct numerical simulations. Figure 3 presents the tip 
velocity of the reaction front versus time for 7.6Re = , 310−=Ma  and 8=Θ ; the plot 
demonstrates all elements of the DDT from initial flame acceleration to steady detonation. 
Focusing at the acceleration process, we observe several different stages: 1) initially, the 
flame accelerates exponentially in an isobaric (incompressible) regime; 2) later, the 
acceleration regime moderates to approximately linear velocity increase; 3) subsequently, the 
flame velocity saturates to the quasi-steady regime with supersonic velocities in the laboratory 
reference frame. The saturation velocity is comparable to the CJ deflagration speed. Quite 
often, we find saturation process in the form of two steps, which is, presumably, related to 
viscous stress at the channel walls. The effect of gas compression, both behind the flame front 
and ahead of the front, can be observed directly in Fig. 4, which presents the density and 
velocity profiles along the channel axis at various time instants. Compression of the burnt gas 
behind the front is relatively uniform in agreement with the theory [15]. In contrast, in the 
fresh fuel mixture we can see a non-uniform adiabatic compression wave and a shock pushed 
by the flame. When the flame tip reaches the distance about RZtip

3103 ⋅≅  from the closed 
end of the channel, the density of the fuel mixture in the compression wave exceeds its initial 
value approximately 3-4 times. Maximal possible gas compression that could be achieved in a 
shock wave is )1/()1( −+ γγ , see Ref. [1], which equals 6 in the present case. Velocity 
distribution in Fig. 4 shows also the region of the counter-flow (negative velocity) behind the 
flame front, which tends to moderate the acceleration. 

We also demonstrate that the flame acceleration leads finally to detonation triggering. The 
whole multi-dimensional picture of the final stage of the DDT is shown in Fig. 5 with color 
representation for temperature. Figure 5 (a) shows all elements of flame dynamics at that  



   
 
Figure 4. Density and velocity profiles along the channel axis for 7.6Re = . Time instants are 

equally spaced in the range of RtU f /)8.30( − . The plot selected by bold is related to 
28.3/ =RtU f . 

 
stage, figures (b) and (c) illustrate some interesting features of the process in detail. In Fig. 5 
(a) we squeeze the pictures in z-direction to make the whole flow structure visible (we remind 
that the channel width is 2R). The central part in the first snapshot shows the elongated flame 
front at the very beginning of the explosion. In addition, we can see the explosion starting 
along the walls because of viscous heating as explained in Ref. [16]. The process is more 
pronounced in the second snapshot. Tongues of the explosion burst along the walls at high 
speed, catch up with the flame tip (second snapshot) and then leave it far behind engulfing the 
flame (third snapshot). Interaction of the explosion and the flame produces a strong turbulent 
flow, which enhances burning. Figures 5 (b) and (c) indicate that turbulence develops as a 
result of hydrodynamic instabilities. Presumably, these are the Kelvin-Helmholtz, Rayleigh-
Taylor and Richtmyer-Meshkov instabilities. We can recognize classical elements of the 
instabilities: small perturbations at the beginning in Fig. 5 (b), a vortex street, "cat-eye" 
vortices and the "mushroom"-shape of the leading part of the flame front in Fig. 5 (c). 
Configuration of the turbulent burning region resembles the characteristic shape of an 
accelerating turbulent flame observed in the experiments [4,5] quite well. Experimental 
papers typically describe the process as fast turbulent burning in a boundary layer, which 
pushes a strong shock thereby reducing the reaction time in the fuel mixture and facilitating 
the explosion. Since the shock is almost planar, the explosion spreads from the channel walls 
to the axis and produces detonation considerably ahead of the turbulent flame brush. Again, 
we emphasize strong resemblance between the present simulations and the scenario of 
"explosion-within-explosion" well-known from the experimental works [4]. A large pocket of 
unburnt gas remains trapped behind the detonation front. The detonation is seen on the last 
snapshot of Fig. 5 (a).  
 
Gas compression moderates flame acceleration in tubes with obstacles 
As demonstrated in Refs. [12,13], the physical mechanism of flame acceleration in obstructed 
tubes/channels differs qualitatively different from the classical Shelkin mechanism [9,10]. 
This new mechanism is extremely strong, providing flame acceleration that is independent of 
the Reynolds number, and as such may be quite important for technical applications. 
Specifically, fast flame propagation in the free central part of an obstructed channel creates 
pockets of fresh fuel mixture between the obstacles, as illustrated in Fig. 6. Gas expansion due 
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Figure 5. Temperature field during DDT for 10Re = ; (a) Time instants are equally spaced in 
the range RtU f /)16.70.7( − ; (b) Close-up view with original aspect ratio on time instant 

RtU f /0.7 ; (c) Close-up view on time instant RtU f /04.7 . 
 

to delayed burning in the pockets produces a powerful jet flow in the unobstructed part of the 
channel. The jet flow renders the flame tip to propagate even faster, which produces new 
pockets, generates a positive feedback between the flame and the flow, and leads to flame 
acceleration. According to the theory [12] developed within the limit of incompressible flow, 
propagation of the flame tip is described by the equation 
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which implies exponential acceleration )/exp( RtUZ ftip σ∝&  with the scaled acceleration rate  

)1/()1(0 ασ −−Θ=  independent of the Reynolds number. Similar to smooth tubes, flame 



 

          

Figure 6. Schematic of the physical mechanism of flame acceleration in tubes with obstacles. 
 
acceleration occurs because of the extra gas volume produced in the burning process and 
indicated by the factor )1( −Θ  in Eq. (4). As long as gas compression is negligible (at the 
initial stage of flame acceleration), this extra volume results in the jet flow shown in Fig. 6. 
However, as the speed of the flame tip approaches the sound speed, the effects of gas 
compression become important; they make the jet flow in Fig. 6 weaker and moderate the 
acceleration process. The quantitative theory of the moderation mechanism has been 
developed in Ref. [17] using the Taylor series for 1<<Ma . Accounting for small, but finite 
gas compression we can extend  the theoretical results  Ref. [12] to   
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Similar to Eq. (1) for tubes with smooth walls, the derived equation (5) describes moderating 
influence of gas compression in tubes with obstacles. The moderating role is incorporated 
both in linear and nonlinear terms in tipZ . Figure 7 compares the analytical results obtained 
for the incompressible flow, Eq. (4), the weakly compressible flow, Eq. (5), and the numerical 
data of Refs. [12,13]. In all three cases, the theory developed for non-zero Mach numbers 
agrees well with the simulation results at the initial stage of flame acceleration, but deviates at 
later stages. The states of deviation approximately correspond to the same level of flow 
compressibility, 1.0/ ≈sz cu , which is achieved faster for larger values of the blockage ratio, 
e.g. at 8.8;6.6;4.4/ ≈RZtip  for 3/2;2/1;3/1=α , respectively. Still, the flame accelerates 
extremely fast in channels with obstacles, which makes validity of the formulation based on 
the Taylor series quite limited in time. 
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Figure 7. Flame tip position for 8=Θ , 4.1=γ  as predicted by the theory for 310;0 −=Ma  
and different values of the blockage ratio 3/2;2/1;3/1=α  (lines), and found in the 

numerical simulations (markers). 
 

In order to study the role of gas compression at the developed stages of flame 
acceleration in obstructed channels, we performed direct numerical simulations of the Navier-
Stokes combustion equations. Characteristic temperature and velocity distribution at the 
initial stage of the process are shown in Fig. 8, where we easily recognize the main elements 
of the new acceleration mechanism, namely, fast spreading of the flame fronts in the central 
free part of the channel, delayed burning in the pockets and the strong jet flow. Figure 9 
shows position of the flame tip versus time (scaled according to Eq. (4)) as predicted by the 
theoretical model of incompressible flow and found in numerical simulations for different 
initial values of the Mach number. As we can see, the limit of incompressible flow holds with 
good accuracy for 310−=Ma ; still, deviations are noticeable already for 3105 −⋅=Ma . For 

210−=Ma  the deviations are even stronger with the effective acceleration rate smaller by a 
factor of about 2 as compared to the predictions of Eq. (4). Still, all plots of Fig. 9 
demonstrate almost exponential acceleration of the flame tip versus time, which correspond to  

 

 
Figure 8. Snapshots of temperature (a) and velocity (b) of burning in channels with obstacles 

for 8=Θ ,  310−=Ma , 3/2=α , 4/1/ =Δ Rz . 



 
Figure 9. Flame tip position as predicted by the theory for 0=Ma  and obtained in the 
simulations for different values of the blockage ratio 3/2;2/1;3/1=α , 8;5=Θ  and 

233 10;105;10 −−− ⋅=Ma  (markers). 
 
the relatively initial stage of flame acceleration. Modification of the acceleration regime 
occurs at later stages of the process as presented in Fig. 10. The moderation of flame 
acceleration because of gas compression agrees with the concept that the flame propagation 
velocity cannot exceed the limiting value of the CJ deflagration speed, for which the 
downstream flow is sonic. We therefore expect saturation of the flame tip velocity to a certain 
steady value at the end of the acceleration process, but prior to an explosion. Indeed, Fig. 10 
demonstrates such saturation, obtained computationally at the final stage of flame 
acceleration, for various blockage ratios. 

Finally, we discuss how flame acceleration in obstructed channels may lead to DDT. It 
is well known that any flame propagating from a closed end pushes a flow in the fuel mixture 
with a weak shock/compression wave at the head of the flow. The flame acceleration renders 
the compression wave stronger, until it develops into a shock of considerable amplitude. 
Preheating of the fuel mixture by the shock is conventionally considered as one of the main 
elements of DDT both in obstructed and unobstructed tubes/channels [2-4]. The temperature 
behind the shock increases, and the reaction time in any compressed gas parcel decreases 
drastically. The decrease in the reaction time may result in explosion and DDT ahead of the 
flame front unless the parcel is burnt by the flame before active explosion is initiated. Thus, in 
general, we may expect two possible outcomes for the flame acceleration: 1) if the reaction 
time behind the shock is sufficiently short, then it drives the explosion and DDT; 2) the 
reaction time may be longer than the interval available for a gas parcel to travel between the 
shock and the flame. In the latter case, explosion does not occur and the final state of flame 
acceleration is the CJ deflagration. Both CJ detonation and deflagration have been 
experimentally found in smooth tubes [14]. In the numerical simulations for the geometry of 
obstructed channels, we also observed both possibilities of DDT and CJ deflagration for 
different reaction kinetics. Taking reaction of the first order with respect to density 
(designated by 1=n  in Fig. 10), we obtained statistically steady CJ deflagration at the end of 
flame acceleration with no explosion or DDT. This result indicates that the decrease in the 
reaction time behind the shock is not sufficient, and the gas parcels are consumed by the 
flame front before spontaneous reaction develops into a powerful explosion. Thus, in order to  



 

 
Figure 10. Time dependence of the flame tip velocity for 8=Θ , 3/2;2/1;3/1=α , 

3105 −⋅=Ma  and different reaction order with respect to density 2;1=n . 
 
observe DDT, we needed to take another reaction mechanism, e.g. with 2=n , which is more 
sensitive to pressure and temperature increase in the shock, and obtained explosion triggering 
and DDT, see Fig. 10. Remarkably, in this case the reaction rate is so sensitive to pressure and 
temperature that the DDT occurs before the flame reaches the CJ deflagration state. 
 
Summary 
In this presentation, we considered the role of gas compression in moderating flame 
acceleration in DDT.  Both geometries of channels with smooth walls and with obstacles have 
been considered. Previous theoretical results [9-13] have been limited to the initial 
acceleration stage in the incompressible flow, which results in an exponential regime of flame 
acceleration. Accounting for first-order terms in the Taylor series for small, but finite Mach 
number, we demonstrate that gas compression modifies the exponential regime into a much 
slower one. The developed stages of flame acceleration with considerable gas compression 
have been studied using direct numerical modeling, which substantiates predictions of the 
analytical theory and shows moderation of the acceleration regime and eventual saturation to 
steady (or statistically-steady) fast flame propagation, which can be associated with the CJ 
deflagration known from the classical theory [1]. We also demonstrate the possibility of DDT 
both for channels with smooth walls and with obstacles. 
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